GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (2)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 120, pp. 7144-7156, ISSN: 0148-0227
    Publikationsdatum: 2019-12-03
    Beschreibung: Aerosol particle number concentrations have been measured at Halley and Neumayer on the Antarctic coast, since 2004 and 1984, respectively. Sulphur compounds known to be implicated in particle formation and growth were independently measured: sulphate ions and methane sulphonic acid in filtered aerosol samples and gas phase dimethyl sulphide for limited periods. Iodine oxide, IO, was determined by a satellite sensor from 2003 to 2009 and by different ground-based sensors at Halley in 2004 and 2007. Previous model results and midlatitude observations show that iodine compounds consistent with the large values of IO observed may be responsible for an increase in number concentrations of small particles. Coastal Antarctica is useful for investigating correlations between particles, sulphur, and iodine compounds, because of their large annual cycles and the source of iodine compounds in sea ice. After smoothing all the measured data by several days, the shapes of the annual cycles in particle concentration at Halley and Neumayer are approximated by linear combinations of the shapes of sulphur compounds and IO but not by sulphur compounds alone. However, there is no short-term correlation between IO and particle concentration. The apparent correlation by eye after smoothing but not in the short term suggests that iodine compounds and particles are sourced some distance offshore. This suggests that new particles formed from iodine compounds are viable, i.e., they can last long enough to grow to the larger particles that contribute to cloud condensation nuclei, rather than being simply collected by existing particles. If so, there is significant potential for climate feedback near the sea ice zone via the aerosol indirect effect.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-01-31
    Beschreibung: The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (〈20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...