GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Document type
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yang, Shixiong; Liu, Kam-biu; Yi, Sangheon; Siyuan, Ye; Li, Jie; Yuan, Hongming; Zhao, Guangming; Pei, Shaofeng; He, Lei; Ding, Xigui; Cho, Tae-Sop (2016): Distribution and provenance of modern pollen and spores in the surface sediments of Liaodong Bay, China. Marine Geology, 376, 1-14, https://doi.org/10.1016/j.margeo.2016.03.004
    Publication Date: 2023-01-13
    Description: To elucidate modern pollen and spore distribution and provenance based on their dispersal patterns, we analyzed 72 surface sediment samples from Liaodong Bay, China and 39 analogous samples from its five inflowing rivers. Our results reveal that most of the pollen and spores in the nearshore marine sediments (water depth 〈 8 m) originated from riverine input and that their assemblages corresponded well to the watershed vegetation. Variation in the pollen assemblages in different parts of the marine area could reflect differences in local vegetation. The content of herbaceous pollen decreased with increasing distance offshore, while arboreal pollen and spores increased. Due to the differences in the sedimentary environments and the source areas of pollen and spores, pollen concentrations in the marine area were higher than those in analog sediments in the modern alluvium of the inflowing rivers. The highest pollen concentrations occurred in the northwestern area of Liaodong Bay, where pollen was derived from multiple inflowing rivers. According to the distribution characteristics of pollen and spores from alluvium to marine sediments, it can be inferred that most pollen grains such as Artemisia, Chenopodiaceae, Gramineae, Cyperaceae, Typha, deciduous Quercus, Betula, and Corylus pollen were primarily transported through the inflowing rivers, whereas Pinus and Carpinus pollen were likely to have been transported by wind. The results of DCA (detrended correspondence analysis) analysis and analog dissimilarity analysis suggested that the pollen-spore distribution in the nearshore area of Liaodong Bay mainly reflects fluvial and marine hydrodynamics or water sorting effects, as well as the vegetation distribution onshore. These findings are of critical importance to the interpretation of Quaternary marine pollen data from Liaodong Bay, China.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Keywords: Abies; Alchornea; Alnus; Amaranthaceae; Artemisia; Aster-type; Balsaminaceae; Betula; Bryophytes; Calculated; Caprifoliaceae; Carpinus; Caryophyllaceae; Castanea; Casuarina; Cedrus; Chenopodiaceae; Commelinaceae; Concentricystes; Convolvulaceae; Corylus; Cruciferae; Cupressaceae; Cyperaceae; Dacrydium; Daliaohe_River-Lh11; Daliaohe_River-Lh12; Daliaohe_River-Lh13; Daliaohe_River-Lh14; Daliaohe_River-Lh15; Daliaohe_River-Lh16; Daliaohe_River-Lh17; Daliaohe_River-Lh18; Daliaohe_River-Lh19; Dalinghe_River-Lh31; Dalinghe_River-Lh32; Dalinghe_River-Lh35; Dalinghe_River-Lh36; Dalinghe_River-Lh37; Dalinghe_River-Lh38; Daqinghe_River-Lh1; Daqinghe_River-Lh2; Daqinghe_River-Lh3; Daqinghe_River-Lh4; Daqinghe_River-Lh6; Daqinghe_River-Lh7; Daqinghe_River-Lh8; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dryopteridaceae; Echinops-type; Elaeocarpaceae; Ephedra; Ericaceae; Euphorbiaceae; Eurya; Event label; Fagus; Gentianaceae; Geraniaceae; Gesneriaceae; Ginkgo; Grab; GRAB; Hamamelidaceae; Hicriopteris; Juglans; Lamiaceae; Latitude of event; Leguminosae; Liaodong_Bay-SP1; Liaodong_Bay-SP10; Liaodong_Bay-SP100; Liaodong_Bay-SP12; Liaodong_Bay-SP13; Liaodong_Bay-SP14; Liaodong_Bay-SP15; Liaodong_Bay-SP17; Liaodong_Bay-SP18; Liaodong_Bay-SP19; Liaodong_Bay-SP2; Liaodong_Bay-SP20; Liaodong_Bay-SP22; Liaodong_Bay-SP23; Liaodong_Bay-SP25; Liaodong_Bay-SP27; Liaodong_Bay-SP28; Liaodong_Bay-SP3; Liaodong_Bay-SP30; Liaodong_Bay-SP34; Liaodong_Bay-SP35; Liaodong_Bay-SP36; Liaodong_Bay-SP37; Liaodong_Bay-SP38; Liaodong_Bay-SP39; Liaodong_Bay-SP4; Liaodong_Bay-SP40; Liaodong_Bay-SP42; Liaodong_Bay-SP44; Liaodong_Bay-SP45; Liaodong_Bay-SP47; Liaodong_Bay-SP48; Liaodong_Bay-SP5; Liaodong_Bay-SP52; Liaodong_Bay-SP54; Liaodong_Bay-SP55; Liaodong_Bay-SP56; Liaodong_Bay-SP59; Liaodong_Bay-SP6; Liaodong_Bay-SP60; Liaodong_Bay-SP63; Liaodong_Bay-SP64; Liaodong_Bay-SP65; Liaodong_Bay-SP66; Liaodong_Bay-SP68; Liaodong_Bay-SP7; Liaodong_Bay-SP70; Liaodong_Bay-SP71; Liaodong_Bay-SP73; Liaodong_Bay-SP74; Liaodong_Bay-SP75; Liaodong_Bay-SP76; Liaodong_Bay-SP77; Liaodong_Bay-SP78; Liaodong_Bay-SP79; Liaodong_Bay-SP8; Liaodong_Bay-SP82; Liaodong_Bay-SP83; Liaodong_Bay-SP84; Liaodong_Bay-SP85; Liaodong_Bay-SP89; Liaodong_Bay-SP9; Liaodong_Bay-SP90; Liaodong_Bay-SP91; Liaodong_Bay-SP92; Liaodong_Bay-SP93; Liaodong_Bay-SP94; Liaodong_Bay-SP95; Liaodong_Bay-SP96; Liaodong_Bay-SP97; Liaodong_Bay-SP99; Liaohe_River-Lh21; Liaohe_River-Lh22; Liaohe_River-Lh23; Liaohe_River-Lh24; Liaohe_River-Lh25; Liaohe_River-Lh26; Liaohe_River-Lh28; Liaohe_River-Lh30; Liliaceae; Liquidambar; Lobeliaceae; Longitude of event; Lycopodium-type; Lythraceae; Mallotus; Malvaceae; Melastomataceae; Meliaceae; Mimosaceae; Moraceae; Musaceae; Myriophyllum; Myrtaceae; Nitraria; Oleaceae; Osmunda; Picea; Pinus; Platycarya; Poaceae; Podocarpus; Polygalaceae; Polygonum; Potamogetonaceae; Proteaceae; Quercus; Ranunculaceae; Rhamnaceae; Ricinus; Rosaceae; Rubiaceae; Rumex; Rutaceae; Salix; Sample ID; Sample mass; Sanguisorba; Sapindaceae; Sapotaceae; Saxifragaceae; Scrophulariaceae; Selaginella; Solanaceae; Spores, monolete; Spores, trilete; Sterculiaceae; Symplocaceae; Tamarix; Taraxacum-type; Taxodiaceae; Texture; Thalictrum; Thymelaeaceae; Tilia; Total concentration; Total counts; Tsuga; Typha; Ulmus; Umbelliferae; Valerianaceae; Verbenaceae; Xiaolinghe_River-Lh41; Xiaolinghe_River-Lh42; Xiaolinghe_River-Lh43; Xiaolinghe_River-Lh44; Xiaolinghe_River-Lh45; Xiaolinghe_River-Lh46; Xiaolinghe_River-Lh47; Xiaolinghe_River-Lh48; Xiaolinghe_River-Lh49; Yellow Sea, China; Zygnema
    Type: Dataset
    Format: text/tab-separated-values, 11799 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Keywords: Abies; Alchornea; Alnus; Amaranthaceae; Artemisia; Aster-type; Balsaminaceae; Betula; Bryophytes; Caprifoliaceae; Carpinus; Caryophyllaceae; Castanea; Casuarina; Cedrus; Chenopodiaceae; Commelinaceae; Concentricystes; Convolvulaceae; Corylus; Counting; Cruciferae; Cupressaceae; Cyperaceae; Dacrydium; Daliaohe_River-Lh11; Daliaohe_River-Lh12; Daliaohe_River-Lh13; Daliaohe_River-Lh14; Daliaohe_River-Lh15; Daliaohe_River-Lh16; Daliaohe_River-Lh17; Daliaohe_River-Lh18; Daliaohe_River-Lh19; Dalinghe_River-Lh31; Dalinghe_River-Lh32; Dalinghe_River-Lh35; Dalinghe_River-Lh36; Dalinghe_River-Lh37; Dalinghe_River-Lh38; Daqinghe_River-Lh1; Daqinghe_River-Lh2; Daqinghe_River-Lh3; Daqinghe_River-Lh4; Daqinghe_River-Lh6; Daqinghe_River-Lh7; Daqinghe_River-Lh8; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dryopteridaceae; Echinops-type; Elaeocarpaceae; Ephedra; Ericaceae; Euphorbiaceae; Eurya; Event label; Fagus; Gentianaceae; Geraniaceae; Gesneriaceae; Ginkgo; Grab; GRAB; Hamamelidaceae; Hicriopteris; Juglans; Lamiaceae; Leguminosae; Liaodong_Bay-SP1; Liaodong_Bay-SP10; Liaodong_Bay-SP100; Liaodong_Bay-SP12; Liaodong_Bay-SP13; Liaodong_Bay-SP14; Liaodong_Bay-SP15; Liaodong_Bay-SP17; Liaodong_Bay-SP18; Liaodong_Bay-SP19; Liaodong_Bay-SP2; Liaodong_Bay-SP20; Liaodong_Bay-SP22; Liaodong_Bay-SP23; Liaodong_Bay-SP25; Liaodong_Bay-SP27; Liaodong_Bay-SP28; Liaodong_Bay-SP3; Liaodong_Bay-SP30; Liaodong_Bay-SP34; Liaodong_Bay-SP35; Liaodong_Bay-SP36; Liaodong_Bay-SP37; Liaodong_Bay-SP38; Liaodong_Bay-SP39; Liaodong_Bay-SP4; Liaodong_Bay-SP40; Liaodong_Bay-SP42; Liaodong_Bay-SP44; Liaodong_Bay-SP45; Liaodong_Bay-SP47; Liaodong_Bay-SP48; Liaodong_Bay-SP5; Liaodong_Bay-SP52; Liaodong_Bay-SP54; Liaodong_Bay-SP55; Liaodong_Bay-SP56; Liaodong_Bay-SP59; Liaodong_Bay-SP6; Liaodong_Bay-SP60; Liaodong_Bay-SP63; Liaodong_Bay-SP64; Liaodong_Bay-SP65; Liaodong_Bay-SP66; Liaodong_Bay-SP68; Liaodong_Bay-SP7; Liaodong_Bay-SP70; Liaodong_Bay-SP71; Liaodong_Bay-SP73; Liaodong_Bay-SP74; Liaodong_Bay-SP75; Liaodong_Bay-SP76; Liaodong_Bay-SP77; Liaodong_Bay-SP78; Liaodong_Bay-SP79; Liaodong_Bay-SP8; Liaodong_Bay-SP82; Liaodong_Bay-SP83; Liaodong_Bay-SP84; Liaodong_Bay-SP85; Liaodong_Bay-SP89; Liaodong_Bay-SP9; Liaodong_Bay-SP90; Liaodong_Bay-SP91; Liaodong_Bay-SP92; Liaodong_Bay-SP93; Liaodong_Bay-SP94; Liaodong_Bay-SP95; Liaodong_Bay-SP96; Liaodong_Bay-SP97; Liaodong_Bay-SP99; Liaohe_River-Lh21; Liaohe_River-Lh22; Liaohe_River-Lh23; Liaohe_River-Lh24; Liaohe_River-Lh25; Liaohe_River-Lh26; Liaohe_River-Lh28; Liaohe_River-Lh30; Liliaceae; Liquidambar; Lobeliaceae; Lycopodium-type; Lythraceae; Mallotus; Malvaceae; Melastomataceae; Meliaceae; Mimosaceae; Moraceae; Musaceae; Myriophyllum; Myrtaceae; Nitraria; Oleaceae; Osmunda; Picea; Pinus; Platycarya; Poaceae; Podocarpus; Polygalaceae; Polygonum; Potamogetonaceae; Proteaceae; Quercus; Ranunculaceae; Rhamnaceae; Ricinus; Rosaceae; Rubiaceae; Rumex; Rutaceae; Salix; Sample ID; Sample mass; Sanguisorba; Sapindaceae; Sapotaceae; Saxifragaceae; Scrophulariaceae; Selaginella; Solanaceae; Spores, monolete; Spores, trilete; Sterculiaceae; Symplocaceae; Tamarix; Taraxacum-type; Taxodiaceae; Texture; Thalictrum; Thymelaeaceae; Tilia; Total concentration; Total counts; Tsuga; Typha; Ulmus; Umbelliferae; Valerianaceae; Verbenaceae; Xiaolinghe_River-Lh41; Xiaolinghe_River-Lh42; Xiaolinghe_River-Lh43; Xiaolinghe_River-Lh44; Xiaolinghe_River-Lh45; Xiaolinghe_River-Lh46; Xiaolinghe_River-Lh47; Xiaolinghe_River-Lh48; Xiaolinghe_River-Lh49; Yellow Sea, China; Zygnema
    Type: Dataset
    Format: text/tab-separated-values, 11799 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-14
    Description: Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...