GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Document type
Years
Year
  • 1
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2015-01-01
    Description: Silicate weathering is a key process by which CO 2 is removed from the atmosphere. It has been proposed that mountain uplift caused an increase in silicate weathering, and led to the long-term Cenozoic cooling trend, although this hypothesis remains controversial. Lithium isotopes are tracers of silicate weathering processes, and may allow this hypothesis to be tested. Recent studies have demonstrated that the Li isotope ratio in seawater increased during the period of Himalayan uplift (starting ca. 45 Ma), but the relationship between uplift and the Li isotope ratio of river waters has not been tested. Here we examine Li isotope ratios in rivers draining catchments with variable uplift rates from South Island, New Zealand. A negative trend between 7 Li and uplift shows that areas of rapid uplift have low 7 Li, whereas flatter floodplain areas have high 7 Li. Combined with U activity ratios, the data suggest that primary silicates are transported to floodplains, where 7 Li and ( 234 U/ 238 U) are driven to high values due to preferential uptake of 6 Li by secondary minerals and long fluid-mineral contact times that enrich waters in 234 U. In contrast, in mountainous areas, fresh primary mineral surfaces are continuously provided, driving 7 Li and ( 234 U/ 238 U) low. This trend is opposite to that expected if the increase in Cenozoic 7 Li in the oceans is driven directly by mountain uplift. These data suggest that the increase in seawater 7 Li reflects the formation of floodplains and the increased formation of secondary minerals, rather than weathering of mountain belts.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-22
    Description: Although ocean circulation plays a vital role in the climate system, its response to major carbon-cycle perturbations during the mid-Cretaceous, including mid-Cenomanian event I (MCE I) and the Cenomanian-Turonian oceanic anoxic event (OAE 2), is poorly constrained. Here we present Nd isotope evidence for episodic increases in the influence of boreal seawater in the European epicontinental sea during MCE I. The start of this circulation reorganization lagged the onset of the 13 C positive excursion defining MCE I. This sequence of change is similar to that observed during OAE 2 in the same area, showing a consistent response of regional circulation to changes in the global carbon cycle. Brief intervals of invasion of boreal fauna to mid-latitude seas, two during MCE I and one during OAE 2 (Plenus cold event), all started after the influence of boreal seawater was enhanced, implying a slower biological response to climate cooling rather than passive transport of fauna by boreal waters. The lack of an Nd isotope positive excursion in our record across MCE I supports a volcanic origin for prominent increases in seawater Nd isotope values found in the European epicontinental sea and the tropical Atlantic during OAE 2. The observed tight circulation–carbon cycle coupling may help the upper ocean replenish nutrients from deep waters and/or volcanic sources, providing a critical feedback allowing continuation of MCE I and OAE 2 over long durations.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...