GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (6)
Document type
Keywords
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    Warnemünde : Leibniz Institute for Baltic Sea Research Warnemünde (IOW)
    Keywords: Forschungsbericht ; Watt ; Meeressediment
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (210 Seiten, 171 MB) , Diagramme, Karten
    Language: English
    Note: Förderkennzeichen BMBF 03F0634A. - Verbund-Nummer 01103926 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Estuary-type circulation is a residual circulation in coastal systems with horizontal density gradients. It drives the accumulation of suspended particulate matter in coastal embayments where density gradients are sustained by some freshwater inflow from rivers. Ebenhöh et al. (Ecol Model 174(3):241–252, 2004) found that shallow water depth can explain nutrient gradients becoming established towards the coast even in the absence of river inflow. The present study follows their concept and investigates the characteristic transport of organic matter towards the coast based on idealised scenarios whereby an estuary-type circulation is maintained by surface freshwater fluxes and pronounced shoaling towards the coast. A coupled hydrodynamical and biogeochemical model is used to simulate the dynamics of nutrient gradients and to derive budgets of organic matter flux for a coastal transect. Horizontal nutrient gradients are considered only in terms of tidal asymmetries of suspended matter transport. The results show that the accumulation of organic matter near the coast is not only highly sensitive to variations in the sinking velocity of suspended matter but is also noticeably enhanced by an increase in precipitation. This scenario is comparable with North Sea conditions. By contrast, horizontal nutrient gradients would be reversed in the case of evaporation-dominated inverse estuaries (cf. reverse gradients of nutrient and organic matter concentrations). Credible coastal nutrient budget calculations are required for resolving trends in eutrophication. For tidal systems, the present results suggest that these calculations require an explicit consideration of freshwater flux and asymmetries in tidal mixing. In the present case, the nutrient budget for the vertically mixed zone also indicates carbon pumping from the shelf sea towards the coast from as far offshore as 25 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: A central aspect of coastal biogeochemistry is to determine how nutrients, lithogenic- and organic matter are distributed and transformed within coastal and estuarine environments. Analyses of the spatio-temporal changes of total suspended matter (TSM) concentration indicate strong and variable linkages between intertidal fringes and pelagic regions. In particular, knowledge about the organic fraction of TSM provides insight to how biogenic and lithogenic particulate matter are distributed in suspension. In our study we take advantage of a set of over 3000 in situ Loss on Ignition (LoI) data from the Southern North Sea that represent fractions of particulate organic matter (POM) relative to TSM (LoI $\equiv$ POM:TSM). We introduce a parameterization (POM-TSM model) that distinguishes between two POM fractions incorporated in TSM. One fraction is described in association with mineral particles. The other represents a seasonally varying fresh pool of POM. The performance of the POM-TSM model is tested against data derived from MERIS/ENVISAT-TSM products of the German Bight. Our analysis of remote sensing data exhibits specific qualitative features of TSM that can be attributed to distinct coastal zones. Most interestingly, a transition zone between the Wadden Sea and seasonally stratified regions of the Southern North Sea is identified where mineral associated POM appears in concentrations comparable to those of freshly produced POM. We will discuss how this transition is indicative for a zone of effective particle interaction and sedimentation.The dimension of this transition zone varies between seasons and with location. Our proposed POM-TSM model is generic and can be calibrated against in situ data of other coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Measurement of suspended particulate matter concentration (SPMC) spanning large time and geographical scales have become a matter of growing importance in recent decades. At many places worldwide, complex observation platforms have been installed to capture temporal and spatial variability over scales ranging from cm (turbulent regimes) to whole basins. Long-term in situ measurements of SPMC involve one or more optical and acoustical sensors and, as the ground truth reference, gravimetric measurements of filtered water samples. The estimation of SPMC from optical and acoustical proxies generally results from the combination of a number of independent calibration measurements, as well as regression or inverse models. Direct or indirect measurements of SPMC are inherently associated with a number of uncertainties along the whole operation chain, the autonomous field deployment, to the analyses necessary for converting the observed proxy values of optical and acoustical signals to SPMC. Controlling uncertainties will become an important issue when the observational input comprises systems of sensors spanning large spatial and temporal scales. This will be especially relevant for detecting trends in the data with unambiguous statistical significance, separating anthropogenic impact from natural variations, or evaluating numerical models over a broad ensemble of different conditions using validated field data. The aim of the study is to present and discuss the benefits and limitations of using optical and acoustical backscatter sensors to acquire long-term observations of SPMC. Additionally, this study will formulate recommendations on how to best acquire quality-assured SPMC data sets, based on the challenges and uncertainties associated with those long-term observations. The main sources of error as well as the means to quantify and reduce the uncertainties associated with SPMC measurements are also illustrated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research
    Publication Date: 2023-09-28
    Keywords: 2017_burchana_ems; 2017_burchana_ems_1; 2017_burchana_ems_2; 2017_burchana_ems_3; 2017_burchana_ems_4; 2017_burchana_ems_5; 2017_burchana_ems_6; 2017_burchana_ems_7; 2017_burchana_ems_8; 2017_burchana_ems_9; 2017_prandtl_hoernum1; 2017_prandtl_hoernum1_1; 2017_prandtl_hoernum1_10; 2017_prandtl_hoernum1_100; 2017_prandtl_hoernum1_101; 2017_prandtl_hoernum1_102; 2017_prandtl_hoernum1_103; 2017_prandtl_hoernum1_104; 2017_prandtl_hoernum1_105; 2017_prandtl_hoernum1_106; 2017_prandtl_hoernum1_107; 2017_prandtl_hoernum1_108; 2017_prandtl_hoernum1_109; 2017_prandtl_hoernum1_11; 2017_prandtl_hoernum1_12; 2017_prandtl_hoernum1_13; 2017_prandtl_hoernum1_14; 2017_prandtl_hoernum1_15; 2017_prandtl_hoernum1_16; 2017_prandtl_hoernum1_17; 2017_prandtl_hoernum1_18; 2017_prandtl_hoernum1_19; 2017_prandtl_hoernum1_2; 2017_prandtl_hoernum1_20; 2017_prandtl_hoernum1_21; 2017_prandtl_hoernum1_22; 2017_prandtl_hoernum1_23; 2017_prandtl_hoernum1_24; 2017_prandtl_hoernum1_25; 2017_prandtl_hoernum1_26; 2017_prandtl_hoernum1_27; 2017_prandtl_hoernum1_28; 2017_prandtl_hoernum1_29; 2017_prandtl_hoernum1_3; 2017_prandtl_hoernum1_30; 2017_prandtl_hoernum1_31; 2017_prandtl_hoernum1_32; 2017_prandtl_hoernum1_33; 2017_prandtl_hoernum1_34; 2017_prandtl_hoernum1_35; 2017_prandtl_hoernum1_36; 2017_prandtl_hoernum1_37; 2017_prandtl_hoernum1_38; 2017_prandtl_hoernum1_39; 2017_prandtl_hoernum1_4; 2017_prandtl_hoernum1_40; 2017_prandtl_hoernum1_41; 2017_prandtl_hoernum1_42; 2017_prandtl_hoernum1_43; 2017_prandtl_hoernum1_44; 2017_prandtl_hoernum1_45; 2017_prandtl_hoernum1_46; 2017_prandtl_hoernum1_47; 2017_prandtl_hoernum1_48; 2017_prandtl_hoernum1_49; 2017_prandtl_hoernum1_5; 2017_prandtl_hoernum1_50; 2017_prandtl_hoernum1_51; 2017_prandtl_hoernum1_52; 2017_prandtl_hoernum1_53; 2017_prandtl_hoernum1_54; 2017_prandtl_hoernum1_55; 2017_prandtl_hoernum1_56; 2017_prandtl_hoernum1_57; 2017_prandtl_hoernum1_58; 2017_prandtl_hoernum1_59; 2017_prandtl_hoernum1_6; 2017_prandtl_hoernum1_60; 2017_prandtl_hoernum1_61; 2017_prandtl_hoernum1_62; 2017_prandtl_hoernum1_63; 2017_prandtl_hoernum1_64; 2017_prandtl_hoernum1_65; 2017_prandtl_hoernum1_66; 2017_prandtl_hoernum1_67; 2017_prandtl_hoernum1_68; 2017_prandtl_hoernum1_69; 2017_prandtl_hoernum1_7; 2017_prandtl_hoernum1_70; 2017_prandtl_hoernum1_71; 2017_prandtl_hoernum1_72; 2017_prandtl_hoernum1_73; 2017_prandtl_hoernum1_74; 2017_prandtl_hoernum1_75; 2017_prandtl_hoernum1_76; 2017_prandtl_hoernum1_77; 2017_prandtl_hoernum1_78; 2017_prandtl_hoernum1_79; 2017_prandtl_hoernum1_8; 2017_prandtl_hoernum1_80; 2017_prandtl_hoernum1_81; 2017_prandtl_hoernum1_82; 2017_prandtl_hoernum1_83; 2017_prandtl_hoernum1_84; 2017_prandtl_hoernum1_85; 2017_prandtl_hoernum1_86; 2017_prandtl_hoernum1_87; 2017_prandtl_hoernum1_88; 2017_prandtl_hoernum1_89; 2017_prandtl_hoernum1_9; 2017_prandtl_hoernum1_90; 2017_prandtl_hoernum1_91; 2017_prandtl_hoernum1_92; 2017_prandtl_hoernum1_93; 2017_prandtl_hoernum1_94; 2017_prandtl_hoernum1_95; 2017_prandtl_hoernum1_96; 2017_prandtl_hoernum1_97; 2017_prandtl_hoernum1_98; 2017_prandtl_hoernum1_99; 2018_burchana_ems; 2018_burchana_ems_1; 2018_burchana_ems_10; 2018_burchana_ems_11; 2018_burchana_ems_12; 2018_burchana_ems_13; 2018_burchana_ems_14; 2018_burchana_ems_15; 2018_burchana_ems_16; 2018_burchana_ems_2; 2018_burchana_ems_3; 2018_burchana_ems_4; 2018_burchana_ems_5; 2018_burchana_ems_6; 2018_burchana_ems_7; 2018_burchana_ems_8; 2018_burchana_ems_9; 2018_prandtl_elbe1; 2018_prandtl_elbe1_1; 2018_prandtl_elbe1_10; 2018_prandtl_elbe1_100; 2018_prandtl_elbe1_101; 2018_prandtl_elbe1_102; 2018_prandtl_elbe1_103; 2018_prandtl_elbe1_104; 2018_prandtl_elbe1_105; 2018_prandtl_elbe1_106; 2018_prandtl_elbe1_107; 2018_prandtl_elbe1_108; 2018_prandtl_elbe1_109; 2018_prandtl_elbe1_11; 2018_prandtl_elbe1_110; 2018_prandtl_elbe1_111; 2018_prandtl_elbe1_112; 2018_prandtl_elbe1_113; 2018_prandtl_elbe1_114; 2018_prandtl_elbe1_115; 2018_prandtl_elbe1_116; 2018_prandtl_elbe1_117; 2018_prandtl_elbe1_118; 2018_prandtl_elbe1_119; 2018_prandtl_elbe1_12; 2018_prandtl_elbe1_120; 2018_prandtl_elbe1_121; 2018_prandtl_elbe1_122; 2018_prandtl_elbe1_123; 2018_prandtl_elbe1_124; 2018_prandtl_elbe1_125; 2018_prandtl_elbe1_126; 2018_prandtl_elbe1_127; 2018_prandtl_elbe1_13; 2018_prandtl_elbe1_14; 2018_prandtl_elbe1_15; 2018_prandtl_elbe1_16; 2018_prandtl_elbe1_17; 2018_prandtl_elbe1_18; 2018_prandtl_elbe1_19; 2018_prandtl_elbe1_2; 2018_prandtl_elbe1_20; 2018_prandtl_elbe1_21; 2018_prandtl_elbe1_22; 2018_prandtl_elbe1_23; 2018_prandtl_elbe1_24; 2018_prandtl_elbe1_25; 2018_prandtl_elbe1_26; 2018_prandtl_elbe1_27; 2018_prandtl_elbe1_28; 2018_prandtl_elbe1_29; 2018_prandtl_elbe1_3; 2018_prandtl_elbe1_30; 2018_prandtl_elbe1_31; 2018_prandtl_elbe1_32; 2018_prandtl_elbe1_33; 2018_prandtl_elbe1_34; 2018_prandtl_elbe1_35; 2018_prandtl_elbe1_36; 2018_prandtl_elbe1_37; 2018_prandtl_elbe1_38; 2018_prandtl_elbe1_39; 2018_prandtl_elbe1_4; 2018_prandtl_elbe1_40; 2018_prandtl_elbe1_41; 2018_prandtl_elbe1_42; 2018_prandtl_elbe1_43; 2018_prandtl_elbe1_44; 2018_prandtl_elbe1_45; 2018_prandtl_elbe1_46; 2018_prandtl_elbe1_47; 2018_prandtl_elbe1_48; 2018_prandtl_elbe1_49; 2018_prandtl_elbe1_5; 2018_prandtl_elbe1_50; 2018_prandtl_elbe1_51; 2018_prandtl_elbe1_52; 2018_prandtl_elbe1_53; 2018_prandtl_elbe1_54; 2018_prandtl_elbe1_55; 2018_prandtl_elbe1_56; 2018_prandtl_elbe1_57; 2018_prandtl_elbe1_58; 2018_prandtl_elbe1_59; 2018_prandtl_elbe1_6; 2018_prandtl_elbe1_60; 2018_prandtl_elbe1_61; 2018_prandtl_elbe1_62; 2018_prandtl_elbe1_63; 2018_prandtl_elbe1_64; 2018_prandtl_elbe1_65; 2018_prandtl_elbe1_66; 2018_prandtl_elbe1_67; 2018_prandtl_elbe1_68; 2018_prandtl_elbe1_69; 2018_prandtl_elbe1_7; 2018_prandtl_elbe1_70; 2018_prandtl_elbe1_71; 2018_prandtl_elbe1_72; 2018_prandtl_elbe1_73; 2018_prandtl_elbe1_74; 2018_prandtl_elbe1_75; 2018_prandtl_elbe1_76; 2018_prandtl_elbe1_77; 2018_prandtl_elbe1_78; 2018_prandtl_elbe1_79; 2018_prandtl_elbe1_8; 2018_prandtl_elbe1_80; 2018_prandtl_elbe1_81; 2018_prandtl_elbe1_82; 2018_prandtl_elbe1_83; 2018_prandtl_elbe1_84; 2018_prandtl_elbe1_85; 2018_prandtl_elbe1_86; 2018_prandtl_elbe1_87; 2018_prandtl_elbe1_88; 2018_prandtl_elbe1_89; 2018_prandtl_elbe1_9; 2018_prandtl_elbe1_90; 2018_prandtl_elbe1_91; 2018_prandtl_elbe1_92; 2018_prandtl_elbe1_93; 2018_prandtl_elbe1_94; 2018_prandtl_elbe1_95; 2018_prandtl_elbe1_96; 2018_prandtl_elbe1_97; 2018_prandtl_elbe1_98; 2018_prandtl_elbe1_99; Area/locality; Burchana; Campaign; Comment; CTD/Rosette; CTD-RO; Date/time end; Date/time start; DEPTH, water; Elbe, Germany, Europe; Ems, Germany, Europe; Event label; Height above sea floor/altitude; Identification; LATITUDE; Location; LONGITUDE; Loss on ignition; LP20171016; LP20181016; Ludwig Prandtl; Mass; North Sea; Number; Otzumer Balje; Pressure, water; Project; Sample volume; Suspended matter, particulate/solids
    Type: Dataset
    Format: text/tab-separated-values, 5199 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research
    Publication Date: 2024-05-11
    Description: This dataset comprises results from filter weights of more than 5000 water samples taken during numerous field surveys between 1998 and 2017 in the Odra Lagoon (German Baltic Sea coast), several parts of the German Wadden Sea, the Exclusive Economic Zone of Germany in the German Bight (Southern North Sea), the Limfjorden (Denmark), the Oosterschelde (The Netherlands) and the Ria de Vigo (Spain). From the filter weights and filtered water volumes the suspended particulate matter concentrations (SPMC) and, in most cases, the fractions of organic matter were determined by combustion of the loaded filters (Loss on Ignition - LoI). Over the years, the laboratory methods and the type of filter (Whatman GF/C glass fibre filter, 47 mm diameter) were kept identical, but the sampling methods were adapted to technical demands, to the specific conditions of the sampling areas and to novel methodological insight. The samples had to undergo a number of quality checks regarding sampling time and co-ordinates and all laboratory processing steps. Depending on which test they passed they were assigned two types of quality flags, for (1) space and time information and (2) for the sample itself. They range from 1 ("good": all tests passed) to 4 ("bad and not correctable"); further, 9 is assigned for cases with missing information of time, latitude/longitude or water pressure. Further, the filter weights were corrected for filter offsets and - when Loss on Ignition was also determined - for losses of structural water.
    Keywords: 2001_weser_1; 2003_prandtl_hoernum_1; 2003_prandtl_hoernum_2; 2004_prandtl_hoernum_1; 2005_prandtl_hoernum_1; 2005_prandtl_hoernum_2; 2006_prandtl_hoernum_1; 2006_prandtl_hoernum_2; 2006_prandtl_hoernum_3; 2007_prandtl_hoernum_1; 2008_prandtl_jade_1; 2008_prandtl_jade_2; 2009_prandtl_hoernum_1; 2009_prandtl_hoernum_2; 2009_prandtl_jade_1; 2010_prandtl_otzum1; 2010_prandtl_scanfish001; 2011_intercalibration; 2011_prandtl_otzum1; 2011_prandtl_scanfish001; 2012_prandtl_glider_cal001; 2012_prandtl_glider_cal002; 2012_prandtl_glider_cal003; 2012_prandtl_hoernum_1; 2012_prandtl_scanfish001; 2013_prandtl_407; 2013_prandtl_glider_cal001; 2013_prandtl_glider_cal002; 2014_prandtl_glider_cal001; 2014_prandtl_hoernum_2; 2014_prandtl_scanfish_001; 2014_prandtl_scanfish_002; 2015_prandtl_001; 2016_prandtl_hoernum_1; accu_pole1_01; accu_pole1_02; accu_pole1_03; accu_pole1_04; accu_pole1_05; accu_pole1_06; accu_pole1_07; Area/locality; Baltic Sea; Campaign; Comment; CTD/Rosette; CTD-RO; DATE/TIME; Date/time end; Date/time start; DEPTH, water; elbe_pole1_13; Event label; HE365; HE365/001-1; HE365/019-1; HE365/019-2; HE365/022-2; HE365/029-1; HE365/029-2; HE365/030-2; HE365/032-2; HE365/033-2; HE365/034-2; HE365/035-2; HE371; HE371/01-1; HE371/03-1; HE371/05-1; HE371/07-1; HE371/09-1; HE371/11-1; HE371/13-1; HE371/15-1; HE371/17-1; HE371/19-1; HE371/22-1; HE371/26-1; HE371/28-1; HE371/30-1; HE371/32-1; HE371/34-1; HE371/35-1; HE391; HE391_x1; HE391_x2; HE391_x3; HE391_x4; HE391/03-1; HE391/04-1; HE391/06-1; HE391/10-1; HE391/11-1; HE391/12-1; HE391/13-1; HE391/15-1; HE391/16-1; HE391/20-1; HE391/21-1; HE391/22-1; HE391/23-1; HE391/24-1; HE391/25-1; HE391/26-1; HE488; HE488/10-2; HE488/11-3; HE488/1-3; HE488/14-3; HE488/15-3; HE488/16-3; HE488/17-3; HE488/18-3; HE488/19-4; HE488/20-3; HE488/21-3; HE488/22-4; HE488/23-4; HE488/26-3; HE488/27-3; HE488/28-4; HE488/29-2; HE488/30-3; HE488/31-3; HE488/32-5; HE488/33-3; HE488/33-5; HE488/36-3; HE488/37-4; HE488/38-3; HE488/40-3; HE488/42-3; HE488/44-4; HE488/4-5; HE488/46-3; HE488/48-5; HE488/49-3; HE488/50-4; HE488/51-3; HE488/52-3; HE488/5-3; HE488/6-3; HE488/7-4; HE488/9-2; Height above sea floor/altitude; Heincke; hoernum_pole1_03; hoernum_pole1_06; hoernum_pole1_08; hoernum_pole1_09; hoernum_pole1_10; hoernum_pole1_11; hoernum_pole1_12; HZG_OP19980301; HZG_OP19980301_1; HZG_OP19980301_2; HZG_OP19980301_3; HZG_OP19980301_4; HZG_OP19980301_5; HZG_OP19980301_6; HZG_OP19990401; HZG_OP19990401_1; HZG_OP19990401_10; HZG_OP19990401_11; HZG_OP19990401_12; HZG_OP19990401_13; HZG_OP19990401_2; HZG_OP19990401_3; HZG_OP19990401_4; HZG_OP19990401_5; HZG_OP19990401_6; HZG_OP19990401_7; HZG_OP19990401_8; HZG_OP19990401_9; HZG_OP20000301; HZG_OP20000301_1; HZG_OP20000301_10; HZG_OP20000301_11; HZG_OP20000301_12; HZG_OP20000301_13; HZG_OP20000301_14; HZG_OP20000301_15; HZG_OP20000301_16; HZG_OP20000301_17; HZG_OP20000301_18; HZG_OP20000301_19; HZG_OP20000301_2; HZG_OP20000301_20; HZG_OP20000301_21; HZG_OP20000301_3; HZG_OP20000301_4; HZG_OP20000301_5; HZG_OP20000301_6; HZG_OP20000301_7; HZG_OP20000301_8; HZG_OP20000301_9; HZG_OP20010301; HZG_OP20010301_1; HZG_OP20010301_10; HZG_OP20010301_11; HZG_OP20010301_12; HZG_OP20010301_13; HZG_OP20010301_14; HZG_OP20010301_15; HZG_OP20010301_16; HZG_OP20010301_17; HZG_OP20010301_18; HZG_OP20010301_19; HZG_OP20010301_2; HZG_OP20010301_20; HZG_OP20010301_21; HZG_OP20010301_22; HZG_OP20010301_23; HZG_OP20010301_24; HZG_OP20010301_25; HZG_OP20010301_26; HZG_OP20010301_27; HZG_OP20010301_28; HZG_OP20010301_29; HZG_OP20010301_3; HZG_OP20010301_30; HZG_OP20010301_31; HZG_OP20010301_32; HZG_OP20010301_33; HZG_OP20010301_34; HZG_OP20010301_35; HZG_OP20010301_36; HZG_OP20010301_37; HZG_OP20010301_38; HZG_OP20010301_39; HZG_OP20010301_4; HZG_OP20010301_40; HZG_OP20010301_41; HZG_OP20010301_42; HZG_OP20010301_43; HZG_OP20010301_44; HZG_OP20010301_45; HZG_OP20010301_46; HZG_OP20010301_47; HZG_OP20010301_48; HZG_OP20010301_49; HZG_OP20010301_5; HZG_OP20010301_50; HZG_OP20010301_51; HZG_OP20010301_52; HZG_OP20010301_53; HZG_OP20010301_54; HZG_OP20010301_55; HZG_OP20010301_56; HZG_OP20010301_57; HZG_OP20010301_58; HZG_OP20010301_59; HZG_OP20010301_6; HZG_OP20010301_7; HZG_OP20010301_8; HZG_OP20010301_9; HZG_OP20010401; HZG_OP20010401_1; HZG_OP20010401_10; HZG_OP20010401_11; HZG_OP20010401_12; HZG_OP20010401_13; HZG_OP20010401_14; HZG_OP20010401_15; HZG_OP20010401_16; HZG_OP20010401_17; HZG_OP20010401_18; HZG_OP20010401_19; HZG_OP20010401_2; HZG_OP20010401_20; HZG_OP20010401_21; HZG_OP20010401_22; HZG_OP20010401_23; HZG_OP20010401_24; HZG_OP20010401_25; HZG_OP20010401_26; HZG_OP20010401_27; HZG_OP20010401_28; HZG_OP20010401_29; HZG_OP20010401_3; HZG_OP20010401_30; HZG_OP20010401_31; HZG_OP20010401_32; HZG_OP20010401_33; HZG_OP20010401_34; HZG_OP20010401_35; HZG_OP20010401_36; HZG_OP20010401_37; HZG_OP20010401_38; HZG_OP20010401_39; HZG_OP20010401_4; HZG_OP20010401_40; HZG_OP20010401_41; HZG_OP20010401_42; HZG_OP20010401_43; HZG_OP20010401_44; HZG_OP20010401_45; HZG_OP20010401_46; HZG_OP20010401_5; HZG_OP20010401_6; HZG_OP20010401_7; HZG_OP20010401_8; HZG_OP20010401_9; HZG_OP20020501; HZG_OP20020501_1; HZG_OP20020501_10; HZG_OP20020501_11; HZG_OP20020501_12; HZG_OP20020501_13; HZG_OP20020501_14; HZG_OP20020501_15; HZG_OP20020501_16; HZG_OP20020501_17; HZG_OP20020501_18; HZG_OP20020501_19; HZG_OP20020501_2; HZG_OP20020501_20; HZG_OP20020501_21; HZG_OP20020501_22; HZG_OP20020501_23; HZG_OP20020501_24; HZG_OP20020501_25; HZG_OP20020501_26; HZG_OP20020501_27; HZG_OP20020501_28; HZG_OP20020501_29; HZG_OP20020501_3; HZG_OP20020501_30; HZG_OP20020501_31; HZG_OP20020501_32; HZG_OP20020501_33; HZG_OP20020501_34; HZG_OP20020501_35; HZG_OP20020501_36; HZG_OP20020501_37; HZG_OP20020501_38; HZG_OP20020501_39; HZG_OP20020501_4; HZG_OP20020501_40; HZG_OP20020501_41; HZG_OP20020501_42; HZG_OP20020501_43; HZG_OP20020501_44; HZG_OP20020501_45; HZG_OP20020501_46; HZG_OP20020501_47; HZG_OP20020501_48; HZG_OP20020501_5; HZG_OP20020501_6; HZG_OP20020501_7; HZG_OP20020501_8; HZG_OP20020501_9; HZG_OP20030301; HZG_OP20030301_1; HZG_OP20030301_10; HZG_OP20030301_11; HZG_OP20030301_12; HZG_OP20030301_13; HZG_OP20030301_14; HZG_OP20030301_15; HZG_OP20030301_16; HZG_OP20030301_17; HZG_OP20030301_18; HZG_OP20030301_19; HZG_OP20030301_2; HZG_OP20030301_20; HZG_OP20030301_21; HZG_OP20030301_22; HZG_OP20030301_23; HZG_OP20030301_24; HZG_OP20030301_25; HZG_OP20030301_26; HZG_OP20030301_27; HZG_OP20030301_28; HZG_OP20030301_29; HZG_OP20030301_3; HZG_OP20030301_30; HZG_OP20030301_31; HZG_OP20030301_32; HZG_OP20030301_33; HZG_OP20030301_34; HZG_OP20030301_35; HZG_OP20030301_36; HZG_OP20030301_37; HZG_OP20030301_38; HZG_OP20030301_39; HZG_OP20030301_4; HZG_OP20030301_40; HZG_OP20030301_41; HZG_OP20030301_42; HZG_OP20030301_43; HZG_OP20030301_44; HZG_OP20030301_45; HZG_OP20030301_46; HZG_OP20030301_47; HZG_OP20030301_48; HZG_OP20030301_49; HZG_OP20030301_5; HZG_OP20030301_50; HZG_OP20030301_51; HZG_OP20030301_6; HZG_OP20030301_7; HZG_OP20030301_8; HZG_OP20030301_9; HZG_OP20030501; HZG_OP20030501_1; HZG_OP20030501_10; HZG_OP20030501_11; HZG_OP20030501_12; HZG_OP20030501_13; HZG_OP20030501_14; HZG_OP20030501_15; HZG_OP20030501_16; HZG_OP20030501_17; HZG_OP20030501_18; HZG_OP20030501_19; HZG_OP20030501_2; HZG_OP20030501_20; HZG_OP20030501_21; HZG_OP20030501_22; HZG_OP20030501_23; HZG_OP20030501_24; HZG_OP20030501_25; HZG_OP20030501_26; HZG_OP20030501_27; HZG_OP20030501_28; HZG_OP20030501_29; HZG_OP20030501_3; HZG_OP20030501_30; HZG_OP20030501_31; HZG_OP20030501_32; HZG_OP20030501_33; HZG_OP20030501_34; HZG_OP20030501_35; HZG_OP20030501_36; HZG_OP20030501_37; HZG_OP20030501_4; HZG_OP20030501_5; HZG_OP20030501_6; HZG_OP20030501_7; HZG_OP20030501_8; HZG_OP20030501_9; HZG_OP20040301; HZG_OP20040301_1; HZG_OP20040301_10; HZG_OP20040301_11; HZG_OP20040301_12; HZG_OP20040301_13; HZG_OP20040301_14; HZG_OP20040301_15; HZG_OP20040301_16; HZG_OP20040301_17; HZG_OP20040301_18; HZG_OP20040301_19; HZG_OP20040301_2; HZG_OP20040301_20; HZG_OP20040301_21;
    Type: Dataset
    Format: text/tab-separated-values, 97537 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...