GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Document type
Years
Year
  • 1
    Publication Date: 2016-05-20
    Description: According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross-section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-21
    Description: Water, Vol. 10, Pages 510: Surface Water Quality Evaluation Based on a Game Theory-Based Cloud Model Water doi: 10.3390/w10040510 Authors: Bing Yang Chengguang Lai Xiaohong Chen Xiaoqing Wu Yanhu He Water quality evaluation is an essential measure to analyze water quality. However, excessive randomness and fuzziness affect the process of evaluation, thus reducing the accuracy of evaluation. Therefore, this study proposed a cloud model for evaluating the water quality to alleviate this problem. Analytic hierarchy process and entropy theory were used to calculate the subjective weight and objective weight, respectively, and then they were coupled as a combination weight (CW) via game theory. The proposed game theory-based cloud model (GCM) was then applied to the Qixinggang section of the Beijiang River. The results show that the CW ranks fecal coliform as the most important factor, followed by total nitrogen and total phosphorus, while biochemical oxygen demand and fluoride were considered least important. There were 19 months (31.67%) at grade I, 39 months (65.00%) at grade II, and one month at grade IV and grade V during 2010–2014. A total of 52 months (86.6%) of GCM were identical to the comprehensive evaluation result (CER). The obtained water quality grades of GCM are close to the grades of the analytic hierarchy process weight (AHPW) due to the weight coefficient of AHPW set to 0.7487. Generally, one or two grade gaps exist among the results of the three groups of weights, suggesting that the index weight is not particularly sensitive to the cloud model. The evaluated accuracy of water quality can be improved by modifying the quantitative boundaries. This study could provide a reference for water quality evaluation, prevention, and improvement of water quality assessment and other applications.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-16
    Description: Sensors, Vol. 18, Pages 2292: A Novel Method for Estimating Free Space 3D Point-of-Regard Using Pupillary Reflex and Line-of-Sight Convergence Points Sensors doi: 10.3390/s18072292 Authors: Zijing Wan Xiangjun Wang Kai Zhou Xiaoyun Chen Xiaoqing Wang In this paper, a novel 3D gaze estimation method for a wearable gaze tracking device is proposed. This method is based on the pupillary accommodation reflex of human vision. Firstly, a 3D gaze measurement model is built. By uniting the line-of-sight convergence point and the size of the pupil, this model can be used to measure the 3D Point-of-Regard in free space. Secondly, a gaze tracking device is described. By using four cameras and semi-transparent mirrors, the gaze tracking device can accurately extract the spatial coordinates of the pupil and eye corner of the human eye from images. Thirdly, a simple calibration process of the measuring system is proposed. This method can be sketched as follows: (1) each eye is imaged by a pair of binocular stereo cameras, and the setting of semi-transparent mirrors can support a better field of view; (2) the spatial coordinates of the pupil center and the inner corner of the eye in the images of the stereo cameras are extracted, and the pupil size is calculated with the features of the gaze estimation method; (3) the pupil size and the line-of-sight convergence point when watching the calibration target at different distances are computed, and the parameters of the gaze estimation model are determined. Fourthly, an algorithm for searching the line-of-sight convergence point is proposed, and the 3D Point-of-Regard is estimated by using the obtained line-of-sight measurement model. Three groups of experiments were conducted to prove the effectiveness of the proposed method. This approach enables people to obtain the spatial coordinates of the Point-of-Regard in free space, which has great potential in the application of wearable devices.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...