GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (9)
Document type
Years
Year
  • 1
    Publication Date: 2019-02-01
    Description: Submarine groundwater discharge represents a major but poorly constrained component of coastal marine chemical budgets. In the current study, the geochemical behavior of 224Ra, inorganic nitrogen species, and Fe in shallow coastal groundwater was characterized to improve estimates of chemical flux via submarine groundwater discharge (SGD) at a site in the York River estuary, VA (USA). Directly measured SGD rates varied between 3.9 ± 1.2 cm day−1 offshore, and 8.9 ± 2.6 cm day−1 close to shore. A clear inverse relationship was observed between SGD and tidal height, reflecting the hydraulic gradient between groundwater and surface water. Discharge rates varied spatially in conjunction with the subterranean estuary location, and there was a strong inverse correlation between seepage rates and seepage salinity. Dissolved 224Ra activity in the mixing zone reached levels up to 6 dpm L−1 and co-varied with salinity in the groundwater but not in the surface water or seepage water. Instead, a consistent sigmoidal trend of Ra with pH was observed, which matched previous laboratory experiment results. Dissolved NH4 + reached concentrations up to 120 μM in the groundwater and appeared to mix conservatively with respect to salinity in the subterranean estuary. In contrast, NOx (NO2 − + NO3 −) was low in both fresh groundwater and surface water and showed non-conservative enrichment (up to 23 μM) within the subterranean estuary. Dissolved Fe also showed non-conservative excess in the subterranean estuary, reaching concentrations up to 50 μM. SGD-derived chemical fluxes were estimated using several different commonly used approaches: average groundwater concentrations, pore water constituent-salinity trends coupled with directly collected seepage salinity, constituent concentrations in directly collected seepage, and concentrations in shallowest groundwater samples. Different flux estimates were compared with a “variable endmember” approach based on the observed geochemical distribution and inferred behavior.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-05
    Description: Submarine groundwater discharge (SGD) is an important component of chemical fluxes in the coastal ocean. The composition of SGD is influenced by biogeochemical reactions that take place within the subterranean estuary (STE), the subsurface mixing zone of fresh and saline groundwaters. The STE is characterized by redox gradients that affect the speciation and mobility of redox-sensitive elements (RSEs). We examined the distributions and behavior of the RSEs Mo, U, V, and Cr within the larger redox framework of a shallow STE and evaluated the source-sink function of the STE for these elements. We found that the advection of water through the STE and the apparent respiration of organic matter drives the formation of a “classic” redox sequence typically observed in diffusion-dominated fine-grained sediments. High concentrations of dissolved organic matter (up to 2.9 mM) lead to extensive sulfide production (up to 1.8 mM) within 3 m of the surface. Both Mo and U are quantitatively removed as oxic surface waters mix into ferruginous and sulfidic zones. Molybdenum removal appears to occur where sulfide concentrations exceed ~ 11 μM, a previously reported threshold for quantitative formation of highly particle-reactive thiomolybdate species. Uranium removal apparently occurs via reduction and formation of insoluble phases or sorption to sediments. It is not clear how readily sequestered metals may be returned to solution, but SGD may be an important sink in the marine budget for both Mo and U. In contrast, both V and Cr show non-conservative addition across the salinity mixing gradient. Increases in pH appear to promote dissolution of V from minerals within the shallow aquifer, and mobilization may also be associated with dissolved organic matter. Chromium enrichment is associated with higher dissolved organic matter and is likely due to the formation of soluble Cr-organic complexes. Fluxes of these elements were constrained using SGD volume fluxes, determined using radium isotopes as well as direct discharge measurements by Lee-type seepage meters, and concentrations in directly-sampled seepage (Mo: − 0.21 to − 7.7 μmol m− 2 day− 1; U: − 0.02 to − 0.6 μmol m− 2 day− 1; V: 0.05 to 2.0 μmol m− 2 day− 1; Cr: 0.12 to 4.4 μmol m− 2 day− 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively), and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: The determination of sediment accumulation rates in environments with temporal variations in texture is challenging using traditional radioisotope methods, largely due to low activities associated with coarse sediments. This study used Englebright Lake, an impoundment in northern California, as a model system to examine the application of plutonium isotopes in lacustrine environments where the interlayering of coarse and fine sediments complicates the geochronology. Inductively coupled plasma mass spectrometry was used to quantify plutonium isotopes and low limits of detection allowed for the measurement of plutonium in sand, clay, and silt fractions. Although measurable levels of plutonium were found in sand fractions, over 75 % of the total plutonium activity was found in fine-grain-size fractions (〈63 μm). Correlations between cesium-137 and plutonium activities in fine-grained sediments (r = 0.81–0.98, p 〈 0.005) suggest that plutonium isotopes may be substituted for cesium isotopes in coarse-grained sediments where cesium is typically below detectable levels. Sediment accumulation rates calculated from grain-size normalized plutonium activity profiles ranged from 6 to 145 cm year−1 in Englebright Lake and identified a sediment depocenter at the delta front upstream of Englebright Dam. Progradation of the delta front reflected changes in sediment supply from the watershed in response to flood events, whereas average annual accumulation responded to human impacts. This study extends the application of plutonium isotopes for sediment geochronology to aquatic environments dominated by coarse sediments and provides new information that contributes to a better understanding of the processes influencing sediment deposition in Englebright Lake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: The subterranean estuary (STE), the subsurface mixing zone of outflowing fresh groundwater and infiltrating seawater, is an area of extensive geochemical reactions that determine the composition of groundwater that flows into coastal environments. This study examined the porewater composition of a shallow STE (〈5 m depth) in Gloucester Point, VA (USA) over two years to determine seasonal variations in dissolved organic carbon (DOC) and the reduced metabolites Fe, Mn, and sulfide. An additional aim of this study was to investigate the relative importance of salinity gradients (which have great geochemical influence in surface estuaries) versus redox gradients on STE geochemistry. Two freshwater endmembers were identified, between which redox potential and composition varied with depth-a shallow freshwater endmember was oxidizing and high in DOC, whereas a deep freshwater endmember was reducing, lower in DOC, and high in sulfide. Results showed that dissolved Fe, Mn, and sulfide varied along a redox gradient distinct from the salinity gradient, and that three-endmember mixing was required to quantify non-conservative chemical addition/removal in the STE. In addition to salinity, humic carbon was used as a quasi-conservative tracer to quantify mixing according to a three-endmember model. The vertical distributions of DOC and reduced metabolites remained approximately constant over time, but concentrations varied with season. Dissolved organic carbon concentrations were greatest in the summer, and shallow meteoric groundwater supplied the majority of DOC to the STE. In summer, there was additional evidence for shallow non-conservative addition of DOC. Dissolved Fe and Mn were highest in a subsurface plume through the middle of the STE (100-140 cm below sediment surface at the high tide line) which was characterized by higher concentrations and greater non-conservative addition in the winter. In contrast, sulfide was higher in summer at depths within the Fe and Mn plume (100-140 cm). We attribute the contrasting seasonal patterns of dissolved Fe, Mn, and sulfide to differences in microbial response to temperature changes and organic matter availability, and to competition at the ferrous-sulfidic transition zone between dissimilatory metal reduction and sulfate reduction, leading to sulfate/sulfur reducing bacteria (SRB) being more active in summer and metal reducers being more active in winter. Throughout the STE, seasonal temperature and DOC variations determined the spatial distribution and geochemical cycling of Fe, Mn, and sulfur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Routledge
    In:  In: Living Shorelines: The Science and Management of Nature-Based Coastal Protection. , ed. by Bilkovic, D. M., Mitchell, M., La Peyre, M. and Toft, J. Routledge, Oxford, pp. 271-290.
    Publication Date: 2018-03-09
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Highlights • High resolution mass spectrometry used to detect munition compounds. • Isotope dilution used for accurate quantification of TNT. • Seven explosives and metabolites detected in seawater at ng L−1 concentrations. • Ten explosives and metabolites detected in marine biota from a contaminated site. Abstract As a consequence of World War II, large amounts of munition have been deposited in coastal waters. Deterioration of the mines and bombs is resulting in a release of munition compounds (MCs) like trinitrotoluene to the surrounding marine environment, with potential implications to ecosystems. Analytical methods have thus far been unable to detect these compounds reliably in seawater. We present a highly sensitive method for the analysis of MCs in the marine environment. We combine preconcentration and sample clean up by solid phase extraction with separation and detection by ultra-high performance liquid chromatography – electrospray ionisation – mass spectrometry (UHPLC-ESI-MS) for the detection of MCs dissolved in filtered (〈 0.2 µm) seawater. For biota, dried and ground samples were extracted in acetonitrile and analysed after simple dilution. Eleven MCs were detected by UHPLC-ESI-MS with limits of detection between 0.01 and 25 pg. For the first time, we used heavy isotopes of trinitroluene and dinitrobenzene to improve quantification in environmental samples. We detected 7 MCs in waters sampled at a known munition disposal site in the Baltic Sea after a 1000-fold preconcentration and using an injection volume of 25 µL. Trinitrotoluene and dinitrobenzene were the most abundant MCs, occurring at concentrations between 0.1 and 11.8 ng L−1. We observed 10 MCs at concentrations up to 24 µg g−1 dry weight in benthic organisms sampled from the site. The enhanced sensitivity of our method allowed us to detect MCs at concentrations relevant for assessment and management of munitions disposal sites in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Underwater munitions containing millions of tons of toxic explosives are present worldwide in coastal marine waters as a result of unexploded ordnance and intentional dumping. Dissolution flux of solid explosives following corrosion of metal munition housings controls exposure of biological receptors to toxic munition compounds (MC; including TNT: 2,4,6-Trinitrotoluene, RDX: 1,3,5-Trinitro-1,3,5-triazinane, and DNB: 1,3-Dinitrobenzene). Very little is known about the dissolution behavior of MC in the marine environment. In this work, we exploit a unique marine study site in the Baltic Sea with exposed solid explosives to quantify in situ MC dissolution fluxes using dissolved MC gradients near the exposed explosive surface, as well as benthic chamber incubations. The gradient method gave dissolution fluxes that ranged between 0.001 and 3.2, 0.0001 and 0.04, and 0.003 and 1.7 mg cm-2 d-1 for TNT, RDX, and DNB, respectively. Benthic chamber incubations indicated dissolution fluxes of 0.0047-0.277, 0-0.11, and 0.00047-1.45 mg cm-2 d-1 for TNT, RDX, and DNB, respectively. In situ dissolution fluxes estimated in the current study were lower than most dissolution rates reported for laboratory experiments, but clearly demonstrated that MC are released from underwater munitions to the water column in the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Highlights • Frequent sediment resuspension may have buffered D-Fe released from shelf sediments. • 228Ra was used to estimate trace element fluxes from the Chukchi shelf sediments. • The estimated sediment 228Ra flux ranks among the highest reported globally. • About 10–25% of the Chukchi shelf sediment Fe flux is exported to the Arctic Ocean. The Chukchi Sea is a primary site for shelf-ocean exchange in the Arctic region and modifies Pacific-sourced water masses as they transit via the Bering Strait into the Arctic Ocean. The aim of this study was to use radium and trace metal distributions to improve our understanding of biogeochemical cycles in the Bering and Chukchi Seas, and evaluate their potential response to future changes in the Arctic. We investigated the distributions of dissolved and total dissolvable trace metals (Cd, Fe, Ni, Cu, Zn, Mn, Co, and Pb) in the Bering and Chukchi Seas during spring. In addition, the long-lived radium isotopes (226Ra and 228Ra) were measured as tracers of benthic trace metal inputs. Trace metal concentrations, especially Fe and Mn, were highly elevated in Chukchi shelf waters compared with the open Arctic Ocean and Bering Strait. Trace metal, nutrient, and Ra patterns suggested that Fe, Mn, and Co concentrations were predominantly controlled by reductive benthic inputs, whereas the other trace metals were influenced by biological uptake and release processes. We propose that Fe, Mn, and Co in the Chukchi Sea are supplied from shelf sediments during winter overturning, and we combine the 228Ra fluxes with the distributions of Fe, Mn, and Co to provide a first estimate of their benthic fluxes in the region. The average benthic flux of 228Ra was 1.49 × 108 atoms m−2 d−1, which is among the highest rates reported globally. Estimated dissolved Fe (D-Fe) flux from the sediments was 2.5 μmol m−2 d−1, whereas D-Mn and D-Co fluxes were 8.0 μmol m−2 d−1 and 0.2 μmol m−2 d−1, respectively. The off-shelf transport of D-Fe to the Arctic Ocean is estimated to be about 10–25% of the benthic Fe flux, with the remainder retained on the shelf due to scavenging and/or phytoplankton uptake. Our results highlight the importance of the Chukchi Sea as a major source of the micro-nutrients to the Arctic Ocean, thereby supporting primary production. Long-term changes in factors that affect cross-shelf mixing, such as the observed reduction in ice cover, may therefore enhance shelf nutrient inputs and primary productivity in the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...