GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2016
    In:  Cold Spring Harbor Protocols Vol. 2016, No. 5 ( 2016-05), p. pdb.prot090183-
    In: Cold Spring Harbor Protocols, Cold Spring Harbor Laboratory, Vol. 2016, No. 5 ( 2016-05), p. pdb.prot090183-
    Abstract: This protocol outlines a general approach for characterizing the protospacer-adjacent motifs (PAMs) of Cas9 orthologs. It uses a three-plasmid system: One plasmid carries Cas9 and its tracrRNA, a second targeting vector contains the spacer and repeat, and the third plasmid encodes the targeted sequence (as the protospacer) with varying PAM sequences. It leverages the Cas9 nuclease activity to cleave and destroy plasmids that bear a compatible PAM. The level of depletion of a library of targeted plasmids after Cas9-mediated selection can then be assessed by deep sequencing to reveal candidate PAMs for downstream validation.
    Type of Medium: Online Resource
    ISSN: 1940-3402 , 1559-6095
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2019
    In:  Journal of Clinical Oncology Vol. 37, No. 15_suppl ( 2019-05-20), p. 9050-9050
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 37, No. 15_suppl ( 2019-05-20), p. 9050-9050
    Abstract: 9050 Background: Somatic mutations derived from the expansion of clonal populations of blood cells (clonal hematopoiesis of indeterminate potential, or CHIP) may be detected in sequencing of cell-free DNA (cfDNA) samples. We evaluated the potential implications of CHIP in targeted sequencing of lung cancer plasma samples using matched peripheral blood mononuclear cells (PBMC) to identify CHIP. Methods: Samples were evaluated from OAK, a phase 3 trial of atezolizumab in locally advanced or metastatic NSCLC following failure with platinum-based therapy. 94 samples from Cycle 1 Day 1 (C1D1) plasma and matched PBMC were analyzed with the AVENIO ctDNA Surveillance Kit (For Research Use Only, not for use in diagnostic procedures), a 198-kb next-generation sequencing panel targeting cancer genes. Plasma samples from subsequent cycles of therapy (C2D1, C3D1, and C4D1) were also sequenced with the same panel. Using median input amounts of 22.8 ng cfDNA and 50 ng PBMC DNA, we obtained median deduplicated depths of 5413 and 5070, respectively. Results: In C1D1 cfDNA, a median of 120 single nucleotide variants were detected per sample, with 5.13% of variants not identified in matched PBMC (i.e., putative tumor-derived somatic variants) versus 94.87% of variants identified in matched PBMC (i.e., germline or CHIP variants). While the majority of PBMC-matched variants were SNPs with allele frequency (AF) around 50% or 100% as expected, there was a median of 1 (range 0-8) PBMC-matched cfDNA variants per sample with AF below 10%. Consistent with CHIP, the number of PBMC-matched cfDNA variants per subject below AF 10% were positively associated with age (p-value = 0.0145), and TP53 was the most frequently mutated gene. We found similar results in plasma samples from subsequent cycles. Conclusions: Plasma and PBMC sequencing analysis identified potential mutations derived from CHIP. However, 39% of cfDNA samples had zero potential CHIP mutations identified in the study, possibly due to the specific regions targeted by the AVENIO assay. While this study suggests that only a small percentage of variants detected by the AVENIO Surveillance panel in lung cancer are derived from CHIP, further studies are warranted to assess the impact and removal of these variants.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2019
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Systems Biology, EMBO, Vol. 11, No. 3 ( 2015-03)
    Abstract: image A platform for mining metagenomic DNA for genes contributing to fitness of commensal bacteria in vivo is presented. TFUM seq (Temporal FU nctional Metagenomics sequencing) uses shotgun libraries cloned into a recipient bacterial species, tracked over time in gnotobiotic mice by deep sequencing and computational methods. TFUM seq highlights the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo . Genes from a donor commensal bacterial species, Bacteroides thetaiotaomicron, confer fitness advantages to E. coli growing in the mouse gut. Analyses of population dynamics of E. coli clones harboring Bacteroides thetaiotaomicron genes reveals a galactokinase central to early colonization of the mouse gut, and subsequent dominance of a glycoside hydrolase enabling sucrose metabolism in E. coli . Co‐evolution of the donor plasmid library and the E. coli genome occurs, driving increased galactose utilization in E. coli .
    Type of Medium: Online Resource
    ISSN: 1744-4292 , 1744-4292
    Language: English
    Publisher: EMBO
    Publication Date: 2015
    detail.hit.zdb_id: 2193510-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2016
    In:  Cold Spring Harbor Protocols Vol. 2016, No. 5 ( 2016-05), p. pdb.top086793-
    In: Cold Spring Harbor Protocols, Cold Spring Harbor Laboratory, Vol. 2016, No. 5 ( 2016-05), p. pdb.top086793-
    Abstract: In light of the multitude of new Cas9-mediated functionalities, the ability to carry out multiple Cas9-enabled processes simultaneously and in a single cell is becoming increasingly valuable. Accomplishing this aim requires a set of Cas9–guide RNA (gRNA) pairings that are functionally independent and insulated from one another. For instance, two such protein–gRNA complexes would allow for concurrent activation and editing at independent target sites in the same cell. The problem of establishing orthogonal CRISPR systems can be decomposed into three stages. First, putatively orthogonal systems must be identified with an emphasis on minimizing sequence similarity of the Cas9 protein and its associated RNAs. Second, the systems must be characterized well enough to effectively express and target the systems using gRNAs. Third, the systems should be established as orthogonal to one another by testing for activity and cross talk. Here, we describe the value of these orthogonal CRISPR systems, outline steps for selecting and characterizing potentially orthogonal Cas9–gRNA pairs, and discuss considerations for the desired specificity in Cas9-coupled functions.
    Type of Medium: Online Resource
    ISSN: 1940-3402 , 1559-6095
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Methods Vol. 16, No. 2 ( 2019-2), p. 167-170
    In: Nature Methods, Springer Science and Business Media LLC, Vol. 16, No. 2 ( 2019-2), p. 167-170
    Type of Medium: Online Resource
    ISSN: 1548-7091 , 1548-7105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2163081-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Genome Announcements Vol. 3, No. 1 ( 2015-02-26)
    In: Genome Announcements, American Society for Microbiology, Vol. 3, No. 1 ( 2015-02-26)
    Abstract: T4-like bacteriophages have been explored for phage therapy and are model organisms for phage genomics and evolution. Here, we describe the sequencing of 11 T4-like phages. We found a high nucleotide similarity among the T4, RB55, and RB59; RB32 and RB33; and RB3, RB5, RB6, RB7, RB9, and RB10 phages.
    Type of Medium: Online Resource
    ISSN: 2169-8287
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 2968655-6
    detail.hit.zdb_id: 2704277-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 37, No. 15_suppl ( 2019-05-20), p. e20701-e20701
    Abstract: e20701 Background: Quantifying circulating tumor DNA (ctDNA) is an emerging method to non-invasively assess treatment effect for solid tumors. Despite disease heterogeneity in NSCLC, we set out to identify a broadly applicable ctDNA-based method for disease monitoring. By employing plasma taken during early treatment cycles, we tested whether early response assessed by ctDNA level could predict treatment effect. Methods: Using a 197-gene NGS assay, the AVENIO ctDNA Surveillance Kit (For Research Use Only, not for use in diagnostic procedures), we measured ctDNA levels in post-treatment plasma samples based on variants identified at baseline. We used samples from an observational German Lung Cancer Multi-Marker Study. In a cohort of 83 stage IV lung adenocarcinoma treated with first-line chemo or chemoradiation therapies, we evaluated the association between survival and ctDNA levels in the first available post-treatment plasma sample (median number of days after start of treatment = 23). We used a ctDNA-based monitoring algorithm, and applied it to an independent set of 22 late stage lung squamous cell carcinoma (SCC) that also underwent chemo or chemoradiation therapies to further evaluate the algorithm in different histology subtypes. Results: We divided the 83 adenocarcinoma cohort into training (n = 53) and test (n = 30) sets. We found that subjects with longer progression free survival (PFS) had mean allele fraction (AF) 〈 1% in the training set. We applied the classifier to our validation set and found that subjects with mean AF 〈 1% had longer PFS (HR 0.35; 95% CI 0.12 - 0.93; log-rank P = 0.028) and overall survival (OS) (HR 0.29; 95% CI 0.09 - 0.89; log-rank P = 0.021). Using cutoffs identified in adenocarcinoma, we applied the same algorithms to the SCC cohort. Subjects with mean AF 〈 1% had longer PFS (HR 0.26; 95% CI 0.10 - 0.71; log-rank P = 0.005) and OS (HR 0.12; 95% CI 0.05 - 0.51; log-rank P = 0.001). Conclusions: Even in heterogeneous diseases such as NSCLC, changes in ctDNA levels in response to treatment may prove to be a valuable way of identifying subjects who may not benefit, which is earlier than current standard of care methods like computed tomography (CT) scan. Future prospective studies to confirm these results are warranted.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2019
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2019
    In:  Journal of Clinical Oncology Vol. 37, No. 15_suppl ( 2019-05-20), p. e18086-e18086
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 37, No. 15_suppl ( 2019-05-20), p. e18086-e18086
    Abstract: e18086 Background: The increasing adoption of Next Generation Sequencing (NGS) in molecular profiling of cancer presents a growing need for streamlined interpretation of NGS results in clinical labs. This can be achieved through bioinformatics tools equipped with a highly-curated database on clinically important variants. Methods: We performed an initial assessment of an NGS result interpretation tool called NAVIFY Mutation Profiler (NMP), which enabled us to process a Variant Call Format (VCF) file and generate a report with consensus recommendations of NCCN, ASCO, CAP and ACMG. This annotation tool identifies pathogenic variants and variants of unknown clinical significance (VUS), and groups variants by AMP Tiers. At the time of this assessment, NMP contained curation for ~4,000 variants. In this study, we used NGS results from 38 anonymized clinical cases with known treatment regimens to retrospectively assess NMP as the variant interpretation tool. Our cohort contained lung cancer subjects treated with EGFR tyrosine kinase inhibitor (TKI) (5 cases), as well as subjects relapsed against EGFR TKI (1 case) or ALK TKI crizotinib (22 cases). We also included 10 control cases where standard of care chemo was used because initial diagnostic methods did not reveal any actionable targets. Results: NMP annotated NGS VCF data and generated a report within 10 minutes per case although some cases contained 〉 100 variants. NMP correctly associated EGFR TKI therapies options with the corresponding 5 cases. As expected, NMP did not recommend targeted therapies for the 10 chemo-treated control cases. For the subject relapsed against EGFR TKI, NMP correctly interpreted the complex EGFR mutation profile containing both activating (L858R) and drug-resistance (T790M) variants. In addition, out of 22 cases relapsed against ALK TKI crizotinib, NMP correctly marked 14 with crizotinib resistance when a known ALK variant conferring crizotinib resistance was detected. There was limited or no published clinical evidence to interpret the remaining 8 cases of ALK TKI resistance. Conclusions: NMP correctly interpreted cases containing EGFR and ALK variants in this study. With a highly-curated knowledge base, this tool simplifies NGS clinical reporting by identifying clinically actionable mutations and associating treatment options qualified by supporting clinical evidence.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2019
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 37, No. 15_suppl ( 2019-05-20), p. e14530-e14530
    Abstract: e14530 Background: Somatic variants found in plasma cell-free DNA (cfDNA) may derive from either solid tumors or clonal hematopoiesis (CH). Little is known about how this may impact plasma-based longitudinal disease monitoring using targeted sequencing of circulating tumor DNA (ctDNA). Methods: To assess the potential impact of CH in disease monitoring, we evaluated monitoring algorithms by targeted sequencing with and without matched peripheral blood mononuclear cells (PBMC). Samples were collected from a prospective observational study, where 62 late stage lung adenocarcinoma subjects were treated with first-line chemo or chemoradiation therapy. Pre-treatment plasma cfDNA and matched PBMC were analyzed with the AVENIO ctDNA Surveillance Kit (For Research Use Only, not for use in diagnostic procedures), a sequencing panel of 198 kilobases targeting cancer genes. Median input amounts of 25 ng cfDNA and 50 ng PBMC DNA were sequenced to median deduplicated depths of 4582 and 6134, respectively. Results: A median of 120 single nucleotide variants were detected per cfDNA sample, with 93.1% of these identified in matched PBMC. Most PBMC-matched cfDNA variants were germline SNPs, with allele frequency (AF) ~ 50% or 100%. A median of 1 (range 0-5) PBMC-matched cfDNA variants per sample were detected with an AF 〈 10%, consistent with CH. The number of these variants was positively associated with age (p-value = 0.0039) and the most frequently mutated gene was TP53. The remaining somatic variants (i.e., in cfDNA and not PBMC) had an AF range 0.03-40.9%. These PBMC-informed variants (median of 7 per sample) were used in longitudinal monitoring in the first post-treatment plasma sample to assess early response to therapy. Association between ctDNA level and progression-free survival using the same monitoring algorithm yielded nearly identical results on somatic variants derived from filtering approaches independent of matched PBMC (HR 0.32; 95% CI 0.16 - 0.65; log-rank P = 0.0009) and the PBMC-informed method (HR 0.31; 95% CI 0.14 - 0.66; log-rank P = 0.0013). Conclusions: A targeted panel focused on solid tumors by design has limited impact from CH. For disease monitoring applications in a non-MRD setting, measuring multiple variants instead of a single variant further enables robust classifiers that can moderate the impact of variants, if any, from CH.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2019
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 36, No. 15_suppl ( 2018-05-20), p. 3545-3545
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2018
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...