GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Cancer Immunology, Immunotherapy Vol. 68, No. 11 ( 2019-11), p. 1891-1899
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 68, No. 11 ( 2019-11), p. 1891-1899
    Abstract: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and overall survival remains poor. Chemotherapy is the standard of care for intensive induction therapy. Patients who achieve a complete remission require post-remission therapies to prevent relapse. There is no standard of care for patients with minimal residual disease (MRD), and stem cell transplantation is a salvage therapy. Considering the AML genetic heterogeneity and the leukemia immune-suppressive properties, novel cellular immune therapies to effectively harness immunological responses to prevent relapse are needed. We developed a novel modality of immune therapy consisting of monocytes reprogrammed with lentiviral vectors expressing GM-CSF, IFN-α and antigens. Preclinical studies in humanized mice showed that the reprogrammed monocytes self-differentiated into highly viable induced dendritic cells (iDCs) in vivo which migrated effectively to lymph nodes, producing remarkable effects in the de novo regeneration of T and B cell responses. For the first-in-man clinical trial, the patient’s monocytes will be transduced with an integrase-defective tricistronic lentiviral vector expressing GM-CSF, IFN-α and a truncated WT1 antigen. For transplanted patients, pre-clinical development of iDCs co-expressing cytomegalovirus antigens is ongoing. To simplify the product chain for a de-centralized supply model, we are currently exploring a closed automated system for a short two-day manufacturing of iDCs. A phase I clinical trial study is in preparation for immune therapy of AML patients with MRD. The proposed cell therapy can fill an important gap in the current and foreseeable future immunotherapies of AML.
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2015-12)
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 9 ( 2018-11-22)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2405-2405
    Abstract: INTRODUCTION: A promising rich pipeline of combination therapies targeting checkpoint molecules expressed on T cells and/or tumor cells is currently being developed to abrogate tumor-induced immunosuppression. Novel in vivo models suitable for validating these immunotherapies and predict safety issues are warranted to accelerate their translation to patients. AIM: Epstein Barr virus (EBV) is a type 1 carcinogen that is directly associated with the development of human B cell neoplasms. We modelled EBV infection and tumor progression in long-term humanized mice and investigated the activation of T cells with PD-1 expression. Further, we performed studies evaluating the effects of an anti-PD-1 antibody (pembrolizumab/ keytruda) in on EBV infections and/or tumor growth. METHODS: Humanized mice transplanted with human cord-blood CD34+ stem cells and showing long-term (15 weeks) human T cell reconstitution were infected with an oncogenic recombinant Epstein Barr Virus (EBV), encoding enhanced firefly luciferase (fLuc) and green fluorescent protein (GFP). EBV infections were monitored by optical imaging analyses and PCR. CD8+ and CD4+ T cell subtypes (PD-1+, naïve, central memory, effector memory and terminal effector) were sequentially monitored in blood by longitudinal flow cytometry analyses and in organs at experimental endpoint. Histopathological analyses were performed to characterize EBV infection (EBER+) and PD-1+ T cell-rich infiltrates in tissues and tumors. We used the model to evaluate the effects of pembrolizumab administered after EBV challenge at low dose (first dose 1.65mg/kg and then 3.30 mg/kg, every other week, n=3) or high dose (first dose 5.00 mg/kg and then 10.00 mg/kg every other week, n=3) in respect to EBV infected controls (n=2). RESULTS: EBV-fLuc was detectable one week after infection by non-invasive optical imaging in the spleen, from where it spread rapidly and systemically. Among the EBV-infected mice, 8/18 (=44%) developed macroscopically visible tumors in the spleen. For further analyses of the data, we then compared EBV-infected mice with ("EBV-Tumor") or without ("EBV") macroscopic tumors. At 6 weeks post-infection, the relative CD8+ T cell frequencies increased significantly and constantly (control Vs. EBV p=0.0021, control Vs. EBV-Tumor p= 〈 0.0001, EBV Vs. EBV-Tumor p=0.0072). For absolute cell counts in tissues, CD8+ T cell increases were more dramatic in mice infected with EBV and developing tumors. These differences amounted to approximately tenfold relative to controls and 3-fold relative to mice not developing tumors. Mice infected with EBV showed 90-100% of the CD4+ and CD8+ T cells in lymphatic tissues expressing PD-1. Mice with EBV-tumors showed twice as many PD-1+ CD4+ and three times as many PD-1+ CD8+ T cells as infected mice without tumors. Histopathology combined with EBER in situ hybridization, showed foci of EBV infected cells in close association with PD-1+ infiltrating lymphocytes, often in perivascular regions. This model was then used to evaluate dose-dependent effects of pembrolizumab. The check-point inhibitor controlled EBV-fLUC spread for 2 weeks, but later prompted increased levels of infections. At endpoint analyses, mice receiving pembrolizumab showed larger dissemination of tumors. CONCLUSIONS: We are currently performing additional experiments in order to elucidate this mechanism of EBV rebound. This humanized mouse model contributes to risk assessment prior to clinical trials of the use of checkpoint inhibitors in patients after transplantations at high risk of EBV infections. Disclosures Ganser: Novartis: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Therapy, Elsevier BV, Vol. 24 ( 2016-05), p. S185-S186
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2001818-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: EMBO Molecular Medicine, EMBO, Vol. 10, No. 11 ( 2018-11)
    Type of Medium: Online Resource
    ISSN: 1757-4676 , 1757-4684
    Language: English
    Publisher: EMBO
    Publication Date: 2018
    detail.hit.zdb_id: 2485479-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Therapy, Elsevier BV, Vol. 23 ( 2015-05), p. S181-
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2001818-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Therapy - Methods & Clinical Development, Elsevier BV, Vol. 2 ( 2015), p. 14060-
    Type of Medium: Online Resource
    ISSN: 2329-0501
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2863173-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3933-3933
    Abstract: INTRODUCTION On average 5 recurrent mutations are present in each patient with acute myeloid leukemia (AML). Many mutated genes are implicated as tumor suppressor genes, but their contribution to leukemia stem cell (LSC) survival and chemoresistance is often unknown. We hypothesized that ectopic expression of the wildtype sequence of these genes will restore the function of the tumor suppressor gene and will lead to reduced clonal expansion and increased chemosensitivity. AIM To evaluate the contribution of recurrently mutated genes to leukemia stem cell survival and chemoresistance in human AML cells in vitro and in vivo. METHODS We performed a loss-of-function screening in primary human AML cells and cell lines by lentiviral expression of a pool of 22 wildtype genes associated with AML pathogenesis, which can restore gene function of a repressed pathway or a dysfunctional tumor suppressor gene. The 22 full-length cDNAs were labelled with a genetic barcode, which can be amplified with a common primer for all 22 genes. The readout of the screening was reduced representation of the barcode DNA after in vitro culture or in vivo growth in patient-derived xenograft (PDX) models, which was amplified from DNA and quantified by next-generation sequencing (NGS). Five PDX models with favorable, normal or complex cytogenetics and 3-5 recurrent mutations per model were screened in order to identify cDNAs that could potentially limit the proliferative capacity of LSCs in vivo (5 mice per model). Nine to 16 weeks after transplantation, DNA from blood, bone marrow and spleen were analyzed by NGS. We also screened two CD34+-enriched cord blood samples in vitro. After transduction with the cDNA pool, cells were cultured for 11 days and the barcode representation was analyzed by NGS at days 2, 4, 7, 9 and 11. Finally, we screened the human leukemia cell lines U937and PB14, a newly established cell line from an AML patient with mutations in FLT3, NPM1, RAD21, GSE1, and ROBO2. Cells were treated with cytarabine, doxorubicin or venetoclax for a 3-day period, followed by a 4-day recovery period to allow outgrowth of resistant clones and accumulation of cDNAs that conferred drug resistance. RESULTS Our loss-of-function screening with overexpressed wildtype genes revealed that expression of ETV6 and PTPN11 depleted LSCs in 3 of 5 PDX models and that expression of CEBPA and KDM6A depleted the progeny of normal CD34+ cells in cord blood. ASXL1, EZH2, CUX1, SMC1A and SMC3 had a general negative effect on stem cell self-renewal in both leukemic and normal CD34+ cells. Relative frequencies of the leukemia-specific genes ETV6 and PTPN11 were reduced 3 to 16-fold and 2 to 3-fold, respectively. Both genes were not mutated in the 3 patients' diagnostic samples, but had reduced RNA expression by 10-70% compared to healthy control peripheral blood mononuclear cells. Relative frequencies of cord blood-specific CEBPA was reduced 4-fold and KDM6A 5-fold. We then evaluated whether activation of a repressed pathway can increase sensitivity to cytarabine, doxorubicin or venetoclax in U937 and PB14 cells after 1 or 2 weeks of treatment. All three drugs showed better cytotoxic effects upon p53 expression in both cell lines by a factor of 1.4 to 2.5 fold. Cytarabine and venetoclax improved elimination of leukemic cells that had been transduced with U2AF1 in PB14 cells, which are U2AF1 wildtype. Venetoclax improved elimination of U937 cells that had been transduced with ETV6 or KDM6A, which are wildtype for these genes, while RNA expression was reduced more than 50% in these cells compared to other leukemic cell lines (NB4 and MV4-11). CONCLUSION Functional cDNA screening in PDX models in vivo is feasible and can reveal selective vulnerabilities of leukemic compared to normal stem cells. Our approach was validated by the finding that p53 expression improved chemosensitivity for all drugs tested in two leukemia cell lines, which is expected from the known function of p53 as a critical tumor suppressor gene. Similarly, overexpression of the transcriptional corepressor ETV6 in leukemia cells with low ETV6 expression was found to inhibit leukemia stem cell proliferation in vivo and to sensitize U937 cells to venetoclax. Therefore, activation of ETV6 should be explored as a novel strategy to inhibit LSCs and improve treatment response. Disclosures Ganser: Novartis: Membership on an entity's Board of Directors or advisory committees. Heuser:Janssen: Consultancy; StemLine Therapeutics: Consultancy; Bayer Pharma AG: Consultancy, Research Funding; Tetralogic: Research Funding; Sunesis: Research Funding; Daiichi Sankyo: Research Funding; Karyopharm: Research Funding; BergenBio: Research Funding; Astellas: Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 5721-5721
    Abstract: Introduction: Reactivation of human cytomegalovirus (HCMV) in immune compromised patients after hematopoietic stem cell transplantation (HSCT) is associated with high morbidity and mortality, particularly after cord blood transplantation (CBT). Adoptive transfer of T cells expanded in vitro is currently used as therapy for drug-refractory HCMV disease. A major limitation of this approach is the requirement of HLA-restricted HCMV-specific memory T cells. An alternative approach exploring HLA-independent T cell recognition was sought. Because the HCMV envelope glycoprotein B (gB) is highly expressed during lytic infection and in latently infected cells, we hypothesized that T cells can be redirected to recognize and kill HCMV-specific cells by means of a gB-specific chimeric antigen receptor (CAR). We have synthesized and tested a gB-specific CAR derived from the SM5-1 monoclonal antibody which binds with high affinity (KD 5.7x1011) to a conserved antigenic and non-glycosylated domain of gB. Methods: We generated two codon-optimized SM5-derived scFvs (VH- 〉 VL and VL- 〉 VH) and fused with an existing CAR backbone containing an IgG Fc spacer and intracellular signaling domains. CARs containing either CD28.zeta or 4-1BB.zeta were synthesized and expressed in T cells following a standard retroviral transduction protocol yielding 80-90% transduction rate. Expression of the CARs on T cells was confirmed by flow cytometry using goat anti-human immunoglobulin reactive against the IgG Fc region. 293T cells co-expressing gB and dTomato were used for in vitro cytotoxicity assays. Results: T cells expressing gB-CAR/CD28.zeta were cytotoxic against gB+ target cells producing 90% killing of 293T/gB-dTom cells compared with control CD19 CAR/CD28.zeta cells at an effector-to-target ratio 3:1 for 48 h (parental 293T cells were not killed). The cytolytic activity correlated with expansion of CAR T cells and concomitant loss of gB-dTom expression in the remaining viable 293T cells. Sequential co-culture of these gB-CAR T cells with freshly seeded 293T/gB-dTom resulted into further elimination of target cells. We are currently evaluating the effects of different gB-CAR T cell designs in the killing of HCMV-infected cell lines and primary cells using HCMV laboratory strains expressing the GFP and Gaussia Luciferase reporter genes. Pilot experiments indicated that gB-CAR/CD28.zeta cells with the scFv in the VL- 〉 VH orientation resulted into more clustering and killing of HepG2 cells infected with HCMV-GFP after 24h of co-culture than a control CD19 CAR/CD28.zeta. Humanized mice transplanted with cord blood CD34+ stem cells and challenged with these HCMV laboratory strains will be used to evaluate the in vivo effectivity of cord blood-derived donor-matched gB-CAR-T cells to eliminate acute and latent HCMV infections. Conclusion: These studies explore a novel approach in preventing HCMV reactivation in immunosuppressed patients by redirecting T cells expressing a high-affinity gB-CAR to eliminate HCMV-infected cells in a TCR/MHC-independent manner. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...