GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 21, No. Supplement_6 ( 2019-11-11), p. vi110-vi111
    Abstract: Diffuse lower grade gliomas (LGGs) are generally slow growing primary central nervous system tumors that occur in early adult life. The prevalence of isocitrate dehydrogenase (IDH) mutations is high in LGG, and induces excess production of the oncometabolite 2-hydroxyglutarate (2-HG). These gain-of-function mutations play a key role in promoting metabolic reprogramming of the cancer cell that affects activity of α-KG dependent demethylases. Inhibition of DNA demethylase activity leads to glioma with a CpG island methylator phenotype (G-CIMP). Whether the activity of RNA demethylases and methylation status of tRNAs in LGG are modulated by changes in IDH-status is unknown. AIM: To investigate whether IDH mutations play a role in reprogramming of tRNA modifications in adult glioma. MATERIALS AND METHODS We combined small RNAseq and LC-MS/MS analysis to identify distinct tRNA processing patterns and methylation signatures in LGG tissues. To address important experimental bottlenecks that limit RNAseq-based detection of tRNA and possibly other modified small noncoding RNAs, we employed a tailored small RNAseq method with validation of specific methylation sites by mass-spectrometry. RESULTS Our customized small RNAseq approach yielded 〉 100 fold increase in sequencing reads per tRNA type, thereby dramatically improving tRNA detection when compared to currently used small RNAseq approaches. Moreover, LC-MS/MS analysis revealed a higher abundance of modified nucleosides in tRNA from IDH-mutant LGG compared to IDH-wildtype LGG. Analysis of tRNA from IDH-mutant and IDH-wildtype LGG using the combination of our tailored small RNAseq and LC-MS/MS methodology demonstrated strong differential tRNA expression, tRFs processing and tRNA methylation. CONCLUSION We described an approach that makes use of tailored small RNA sequencing combined with mass-spectrometry that enables insights into cancer driven alterations in tRNA methylation patterns and differential tRNA processing signatures. Our data implies that tumor metabolic reprogramming deregulates tRNA methylation, contributing to an altered epitranscriptomic code in IDH-mutant LGG.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...