GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1931-1931
    Abstract: Background: We recently completed a prospective study (ClinicalTrial.gov identifier: NCT01810120) which showed that haplo-HSCT after depletion of α/β T cells is an effective option for those children in need of an allograft and lacking an immediately available HLA-identical related or unrelated donor. However, recovery of adaptive T-cell immunity remains suboptimal and some patients died due to viral infections in the early post-transplant period. Thus, strategies aimed at accelerating early recovery of adaptive T-cell immunity are desirable. Study design and patients: We designed a phase I/II trial aimed at testing the safety and the efficacy of post-transplant infusion of donor-derived T cells transduced with the new iC9 suicide gene (BPX-501) in children with malignant or non-malignant disorders (ClinicalTrials.gov identifier: NCT02065869); enrollment started in December 2014. Cells are administered within 14 + 4 days after haplo-HSCT. The phase I portion of the trial consists of a classical 3+3 design with 3 cohorts, receiving escalating doses of BPX-501 cells of 2.5 x 105, 5 x105, and 1x106 cells/kg, respectively. Patients included in the phase II portion received the highest dose identified during the phase I portion of the study for a maximum of 60 children in both phase I/II portions of the study. As of July 25th 2015, 25 children have been screened and included in the study: 23 have been infused with BPX-501 cells. The analysis refers to the 16 patients with a minimum follow-up of 90 days after transplantation; they had acute lymphoblastic leukemia (ALL, 6), acute myeloid leukemia (1), severe combined immune-deficiency (4), Wiskott-Aldrich syndrome (3) and Fanconi Anemia (2). All children with acute leukemia were transplanted in morphological complete remission (CR). Median age at haplo-HSCT was 3.5 years (range, 03-17.8); 7 patients (44%) were females. All children received 〉 10x106 CD34+ cells/Kg and 〈 1x105 αβ+ T cells/Kg. There was no difference in graft composition between these 16 patients and those who were previously included in the study on haplo-HSCT after depletion of α/β T cells (historical controls). Results: BPX-501 cells were infused at a median time of 16 days (range 13-18); median cell viability post-thaw was 91% (range 65-97). Treatment was well tolerated and no infusion-related side effects were recorded. The recommended dose identified during the phase I of the trial to be used for the phase II portion was 1x106 cells/kg. Four children developed grade I-II skin only acute graft-versus-host disease (GvHD) at 16, 20, 22 and 34 days after haplo-HSCT, respectively, which resolved with topical steroids; no patient had either gut or liver acute GvHD. The 100-day cumulative incidence (CI) of skin-only grade I-II acute GvHD was 25% (SE 3.6); it was 30% (SE 2.1) in the historical controls (Figure 1 - Panel A). No patient developed chronic GvHD. In 4 patients, mixed chimerism present at time of BPX-501 cell infusion completely reverted to full donor chimerism. None of the 16 patients included in the analysis had graft failure or died of transplant-related complications. Two patients, both with ALL transplanted in CR3, relapsed at 86 and 153 days after the allograft, respectively. Median time to discharge after haplo-HSCT was 28 days (range, 19-86) as compared to 38 days (range, 18-174) in the historical controls (p=0.08). Four patients were re-hospitalized due to: cytomegalovirus (CMV) infection (2), fever of unknown origin (1) and valganciclovir-induced neutropenia (1). BPX-501 cells progressively expanded over time and are still persisting, potentially contributing to the recovery of adaptive T-cell immunity. The mean number of both CD3+ and BPX-501 cells at the different time-points are reported in Figure 1 - Panel B, which also details the data of historical controls. Conclusions: Overall, these data indicate that the infusion of BPX-501 cells is safe and well tolerated. The 100-day CI of skin-only grade I-II acute GvHD observed in these patients is similar to that of children included in the previous trial of haplo-HSCT after depletion of α/β T cells. BPX-501 cells expand in vivo and persist over time, potentially contributing to accelerate the recovery of adaptive T-cell immunity, with improved clinical outcome. The iC9 cell-suicide system may increase the implementation of cellular therapy approaches aimed at optimizing immune recovery after transplantation. Figure 1. Figure 1. Disclosures Qasim: Cell Medica: Research Funding; Autolus Ltd: Consultancy, Equity Ownership, Research Funding; Miltenyi Biotec GmbH: Research Funding; Cellectis: Research Funding. Moseley:Bellicum Pharmaceuticals: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1341-1341
    Abstract: Survival rates of children with relapsed/refractory (r/r) BCP-ALL remain unsatisfactory and little progress has been made in the past 2 decades. Similarly, relapse of childhood B-NHL is usually associated with an aggressive disease and poor outcomes. Targeted immunotherapy with T-cells genetically modified to express a CD19-directed CAR showed an unprecedented antitumor efficacy, leading to the recent FDA and EMA approval of two CD19-CAR products for treatment of BCP-ALL and B-NHL. Relevant toxicities have, however, been reported, mainly related to the development of severe Cytokine Release Syndrome (CRS) and/or of neurotoxicity. At Ospedale Pediatrico Bambino Gesù (OPBG) in Rome, we developed a clinical-grade, 2nd generation, CD19-specific CAR construct, including 4.1bb as costimulatory domain and the inducible caspase-9 safety switch (iC9-CD19-CAR), vehiculated by a retroviral vector, to conduct an academic, phase I/II clinical trial in patients (age 1-25 yrs) affected by BCP-ALL or B-NHL. We now report on the results of the phase I and of the first 8 patients treated in the phase II portion of the study, in terms of feasibility, toxicity, maximum tolerated/recommended dose (MTD/RD) and data on response rate and biological correlates. The phase I, dose-escalation portion of the study included 3 dose levels (DL), namely: DL1, 0.5×106; DL2, 1.5×106; DL3, 3.0×106 CAR+ T cells per kg of recipient body weight. In the phase II portion, patients were treated at the RD identified in the phase I, namely 3.0×106 CAR+cells/kg. All patients received a lymphodepleting regimen consisting of fludarabine and cyclophosphamide for 3 days and iC9-CD19-CAR T cells were subsequently administered as single infusion. Patients were monitored for toxicity, expansion and persistence of iC9-CD19-CAR T cells. Seventeen children were enrolled into the trial and received iC9-CD19-CAR T cells between January 2018 and June 2019. Data were analyzed as of July 20, 2019. The characteristics of the patients are detailed in table 1. The designed dose concentration was successfully produced for all the enrolled patients and we did not observe any production failure. The median transduction rate in the drug product was 54% (range 21-73), while the median vector copy number was 3.8 (range 2.8-6.2). During the phase I portion of the study, no dose limiting toxicities (DLTs) have been recorded, defining the MTD as 3.0×106 CAR+ T cells per kg of recipient body weight. The treatment was overall tolerated and all the toxicities were reversible, the most severe being grade 3-4 neutropenia, thrombocytopenia and/or anemia, occurring in 16/17 (94.1%) patients; in 13/16 patients (81.2%) the hematological toxicity developed before the infusion and persisted after the administration of CAR T cells. Cytokine release syndrome (CRS) occurred in 10/17 patients (58.8%) and was overall moderate, reaching grade 3 (Lee criteria) in one patient only. Notably, none of the patients developed neurotoxicity and no activation of the safety switch was required. All patients were assessed for response at 4 weeks from iC9-CD19-CAR T cell infusion and 13/15 (86.7%) patients with ALL achieved complete remission (CR) with negativity of minimal residual disease (MRD), including 2/3 patients receiving the DL1, 9 patients who had failed a previous allogeneic haematopoietic stem-cell transplantation (HSCT) and 6 patients that had previously received blinatumomab, as CD19-directed immunotherapy. The iC9-CD19-CAR T cells expanded in vivo and were detectable by both flow-cytometry and molecular biology in the blood (Fig.1), bone marrow and cerebrospinal fluid of the responders. One CD19-negative relapse 3 months after infusion was recorded, while 3 additional patients relapsed with CD19+ leukemia blasts. Four patients received HSCT while in CR with MRD negativity because of regrowth of normal CD19+ B cells. The 18-month probability of overall survival for the BCP-ALL cohort is 72.2% (Fig.2). One of the 2 B-NHL patients showed a partial response. Our data indicate that iC9-CD19-CAR T cell in an academic setting is feasible, safe and extremely effective in treating highly resistant/relapsed BCP-ALL. In our trial, no major or life-threatening toxicities were observed and, despite the moderate CRS recorded, high rates of CR were achieved, suggesting that the combination of a retroviral platform and 4.1bb as costimulation is able to mediate a potent antitumor effect Disclosures Merli: Amgen: Honoraria; Novartis: Honoraria; Sobi: Consultancy; Bellicum: Consultancy. Algeri:Bluebird bio: Consultancy, Honoraria; Atara Biotherapeutics: Consultancy, Honoraria; Miltenyi: Honoraria. Locatelli:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4683-4683
    Abstract: Background: Haplo-HSCT after depletion of α/β T and B cells is a suitable and effective option for those children with acute leukemia (AL) who need an allograft and lacking an immediately available HLA-identical donor. With this approach, recipients can benefit immediately after transplantation from the anti-leukemia effect mediated by donor natural killer (NK) and γd T cells, which can also protect against infections. A further improvement of the results achievable with this platform could achieved with a faster adaptive T-cell immunity recovery, which play a key role to augment the graft-versus-leukemia effect and the capacity to fight infections. In light of these considerations, we designed a phase I/II trial aimed at testing the safety and efficacy of post-transplant infusion of donor-derived T cells transduced with the new iC9 suicide gene (BPX-501) in children with either malignant or non-malignant disorders (NCT02065869). Remarkably, after the activation and transduction with the retroviral iC9 construct, BPX501 cells switch the phenotype towards a preferential CD45RO pattern. Patients and methods: The phase I portion of the trial consisted of a classical 3+3 design with 3 cohorts, receiving escalating doses of BPX-501 cells of 2.5x105, 5x105, and 1x106 cells/kg, respectively. Patients included in the phase II portion were planned to receive the recommended dose identified during the phase I part of the study.Enrollment of patients started in December 2014; so far, 25 patients with AL in morphological complete remission (CR) have been enrolled. Twenty patients had acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML). Details on patient, donor and transplant characteristics are reported in table 1. All patients transplanted in CR1 had either poor cytogenetic/molecular characteristics or high levels of minimal residual disease at the end of induction therapy, both factors predicting a high relapse rate. All patients were given a fully myeloablative conditioning regimen (table 1). Before haplo-HSCT, children received rabbit anti-thymocyte globulin (ATG NEOVII, 12 mg/Kg over 3 days, from day -4 to day -2) to prevent both graft-versus-host disease (GvHD) and graft failure, and Rituximab (200 mg/ m2 on day -1) to prevent EBV-related lymphoproliferative disorders. No post-transplantation GvHD prophylaxis was administered. Results: All patients engrafted and no secondary graft failure was recorded. Median time to neutrophil and platelet recovery was 18 days (range 10-22) and 11 days (range 9-13), respectively. Once documented the engraftment of donor cells, BPX-501 T lymphocytes were infused at a median time of 17 days (range 13-52) after the allograft. Two patients were enrolled in the phase I portion of the study; one each received 2.5x105 and 1x106 cells/kg. The remaining 23 children were treated in the phase II, where the recommended dose was 1x106 cells/kg. However, since we did not observe any acute GvHD requiring the infusion of the dimerizing agent (Rimiducid/AP1903) activating iC9 gene in the first 15 children receiving 1x106 cells/kg, we decided to emend the protocol to further increase the BPX501 cell dose infused to 2 and 4x106 cells/kg. Thus, the last 6 patients were enrolled in these 2 last dose levels (3 patients each). Six and 3 patients developed grade II-IV acute and chronic GvHD, respectively. In one child, given 4x106 cells/kg, we infused rimiducid for steroid-resistant grade II skin acute GvHD, with complete resolution of the disease in 24 hours. The cumulative incidence of grade II-III acute and chronic GvHD are shown in figure 1A and B, respectively. Median follow-up of these 25 children is 8 months (range 1-19 months). One of them died due to chronic GvHD-associated bronchiolitis obliterans and one child with ALL transplanted in CR2 relapsed; the cumulative incidence of non-relapse mortality and leukemia recurrence are shown in figure 1C. The probability of disease-free survival at 15 months is 87% (figure 1D). Once infused, BPX501 cells expanded and persisted over time in both peripheral blood and bone marrow. Conclusion: Overall, these data indicate that the infusion of BPX-501 cells in children with AL given selectively manipulated haplo-HSCT results in low non-relapse mortality and chronic GvHD. Although the median observation time is still limited, the cumulative incidence of disease recurrence is promising. Table 1 Table 1. Figure 1 Figure 1. Disclosures Stanson: Bellicum pharmaceuticals: Employment. Moseley:Bellicum Pharmaceuticals: Employment, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 799-799
    Abstract: Background: TBdepl-haploHSCT is a suitable option for children with AL in need of an allograft, lacking an HLA-compatible donor. We previously published promising results in a cohort of 80 children with AL, given this type of allograft (Locatelli et al., Blood 2017), demonstrating a low incidence of acute and chronic graft-versus-host disease (GvHD) and low non-relapse mortality (NRM), translating into a final outcome comparable to that of patients transplanted from an HLA-compatible donor. We present the long-term follow-up analysis of this study (NCT01810120), now including 134 patients, with a minimum observation time of 100 days after the allograft. Patients and methods: Between October 2010 and April 2019, 134 children with AL in morphological complete remission (CR) received TBdepl-haploHSCT from an HLA-partially matched relative (a parent in 97% of cases) at Ospedale Pediatrico Bambino Gesù in Rome, Italy. All patients were prepared to the allograft using a fully-myeloablative conditioning regimen including a combination of cytotoxic drugs and/or total body irradiation (TBI). Anti-T-lymphocyte globulin (ATLG) was used before transplantation (12 mg/kg total dose, from days -5 to day -3) to modulate bi-directional donor/recipient alloreactivity. Rituximab (200 mg/sqm) was administered on day -1 to prevent post-transplantation EBV-induced lymphoproliferative disorders (PTLD). No patient received any post-transplant GvHD prophylaxis. Results: Characteristics of patients enrolled in the study are shown in Table 1. Median follow-up of surviving patients is 60 months (range: 3 months - 8.7 years). Only 3 patients did not achieve engraftment (all affected by acute myeloid leukemia and who did not receive TBI during conditioning regimen); median time to neutrophil and platelet recovery was 13 (range 9-22) and 11 (range 8-23) days, respectively. Cumulative incidence of grade II-III acute GvHD was 16.5% (95% CI 9.9-22.6). One patient developed gut GvHD, while for all other patients skin was the sole organ involved; no case of grade IV GvHD was recorded. Eight out of the 123 patients at risk developed chronic GvHD, in all cases of limited severity, the cumulative incidence of this complication being 7.6% (95% CI 2.3-12.6). Six patients died for transplant-related complications (2 because of idiopathic pneumonitis and 1 each of disseminated adenovirus infection, cardiac insufficiency, combined CMV/rhinovirus pneumonia and sepsis from Pseudomonas aeruginosa), the 5-year cumulative incidence of NRM being 4.5% (95% CI, 1.8-9.0). Since 25 patients relapsed at a median time of 173 days (range 59-1012) after HSCT, the 5-year cumulative incidence of relapse is 21.1% (95% CI, 14.2-29.1). The 5-year probability of overall and leukemia-free survival (LFS) were 74.6 (95% CI 65.1 -71.9) and 74.4% (95% CI 65.4-81.4) (Figure 1A), respectively. Use of TBI during the preparative regimen, age at transplant above the median value (Figure 1B) and disease status at transplantation (CR1 and CR2, Figure 1C) were associated with better patient's outcome, because of a reduced incidence of relapse (Figure 1D for TBI). All these 3 factors remained statistically significant in multivariable analysis for LFS: hazard ratio (HR) for TBI was 0.16 (95% CI, 0.06- 0.37, p & lt;0.001, HR for age at HSCT was 0.27 (95% CI, 0.11-0.65, p=0.003), while that for disease status was 0.49 (95% CI, 0.26-0.91, p=0.02), respectively. The 5-year GvHD/relapse-free survival was 69.9% (95% CI 60.8-77.3). The median CD3+ cell count on day +30, +90, +180 and +360 were 187, 215, 660 and 1260/mcl, respectively. Conclusions: These data confirm in a larger population and with a longer follow-up that TBdepl-haploHSCT is a safe and effective transplant option, being associated with a low risk of both NRM and acute/chronic GvHD, resulting into a 5-year LFS comparable or even better with that reported in studies using either an HLA-identical sibling or an unrelated volunteer as donor. In particular, the low incidence of chronic GvHD preserves a good quality of life in patients with long life-expectancy. Leukemia recurrence represents the main cause of treatment failure and strategies based either on the use of a titrated number of donor T cells transduced with a safety switch or ex-vivo depleted of the alloreactive component could further improve patient's outcome. Figure 1 Disclosures Merli: Novartis: Honoraria; Sobi: Consultancy; Amgen: Honoraria; Bellicum: Consultancy. Algeri:Miltenyi: Honoraria; Atara Biotherapeutics: Consultancy, Honoraria; Bluebird bio: Consultancy, Honoraria. Locatelli:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cell Reports, Elsevier BV, Vol. 20, No. 4 ( 2017-07), p. 846-853
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 969-969
    Abstract: β-thalassemia is one of the most common monogenic blood disorders worldwide, and is highly prevalent in Mediterranean countries. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been the only curative treatment for transfusion-dependent β-thalassemia (TDT; the most severe disease form) for many years, but it is limited by donor availability and has a significant risk of morbidity and mortality. We conducted a chart review of patients with β-thalassemia who underwent allo-HSCT (N=80) at the Bambino Gesù Children's Hospital, Rome, Italy, between March 2011 and August 2018. Median (range) age at allo-HSCT was 5.5 (0.3-20.0) years [ & lt;12 years: n=70 (87.5%), ≥12-18 years: n=7 (8.8%), ≥18 years: n=3 (3.8%)] and all patients but one had TDT [n=79 (98.8%)] . Prior to allo-HSCT, patients received a median (range) of 17.4 (4-52) transfusions per year (n=64) and had a median (range) serum ferritin concentration of 1217 (135-9123) ng/mL and a median (interquartile range) hemoglobin level of 10.3 (9.3-11.4) g/dL. All patients had received regular iron chelation therapy prior to transplantation. In total, 18 (22.5%), 28 (35.0%), and 34 (42.5%) patients received allo-HSCT from human leukocyte antigen (HLA)-identical sibling donors, HLA-haploidentical donors, and unrelated donors (fully matched donor: n=28, donor with a single HLA disparity: n=6), respectively. Of these donors, 42 (52.5%) were carriers for thalassemia-associated mutations. In total, 53 (66.3%) donors and 35 (43.8%) recipients were cytomegalovirus-positive. Bone marrow was the stem cell source in 51 cases (63.8%), while 28 patients received an alphabeta T-cell depleted peripheral blood haploidentical HSCT (35.0%); the remaining child (1.3%) received both bone marrow and cord blood from the same related donor. All patients continued to receive transfusions immediately after allo-HSCT; however, only 7 (8.8%) received a transfusion in the 3 to 12-month post-transplantation period (2 due to underlying disease; 5 due to other reasons including GI bleeding). Median (range) time to reach transfusion-free status was 3.8 (1.1-47.8) weeks. Median (interquartile range) hemoglobin levels at 6 and 12 months after allo-HSCT were 10.9 (10.2-11.9) and 11.9 (10.6-13.0) g/dL, respectively. The cumulative incidences of primary and secondary graft failure were 10.0% and 12.5% at 24 months (HLA-identical donor: 0% and 11.1%, haploidentical donor: 17.9% and 3.6%, unrelated donor: 8.8% and 20.6%). Eleven out of 14 patients experiencing graft failure were successfully rescued with a second allograft, while 2 patients were not retransplanted due to parental decision and 1 patient died after the engraftment of the second allograft. Eight patients developed grade II-IV acute graft-versus-host disease (GVHD) and one patient developed moderate chronic GVHD. Cumulative incidence rates of grades II-IV and III-IV acute GVHD were 12.7% and 8.0% at 24 months (HLA-identical donor: 0% and 0%, haploidentical donor: 7.3% and 0%, unrelated donor: 23.8% and 18.8%). Three patients (3.8%) died of transplant-related causes (1 case each of hemophagocytic lymphohistiocytosis, sepsis, and multi-organ failure [the patient receiving the second allograft]) with a median (range) time from transplantation to death of 8.7 (3.7-11.0) months. Of these patients, all had been transplanted from an unrelated donor and 2 had reached sustained full-donor chimerism. The probability of overall and event-free (event defined as either death or primary/secondary graft failure) survival was 96.2% and 81.2% at 24 months (HLA-identical sibling donor: 100% and 88.9%, haploidentical donor: 100% and 78.6%, unrelated donor: 91.2% and 79.4%). The probability of thalassemia-free survival (event defined as either death or primary/secondary graft failure not rescued by a second allograft) was 93.7% at 24 months (HLA-identical sibling donor: 100%, haploidentical donor: 92.9%, unrelated donor: 91.2%). In this large single-center cohort of children with predominantly TDT, allo-HSCT led to beneficial outcomes for most patients, resulting in the discontinuation of transfusions with 93.7% of patients being thalassemia-free. Nevertheless, HSCT is still associated with GVHD, graft failure, and mortality, and only 22.5% of patients had an HLA-identical sibling donor, illustrating a key limitation of allo-HSCT. Emerging research is addressing such barriers to treatment. Disclosures Merli: Novartis: Honoraria; Sobi: Consultancy; Amgen: Honoraria; Bellicum: Consultancy. Algeri:Miltenyi: Honoraria; Atara Biotherapeutics: Consultancy, Honoraria; Bluebird bio: Consultancy, Honoraria. Gruppioni:Bluebird bio: Employment, Equity Ownership. Kommera:Bluebird bio: Employment, Equity Ownership. Maa:Bluebird bio: Employment, Equity Ownership. Locatelli:Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Annals of Clinical and Translational Neurology, Wiley, Vol. 6, No. 10 ( 2019-10), p. 2110-2113
    Abstract: Neuromyelitis optica is an immune‐mediated disease characterized by a relapsing course, resulting in progressive disability. In children, given the long life expectancy, a disease‐modifying treatment could be particularly desirable. Unfortunately, the currently available treatment strategies with this potential are scarce. Very limited data are available about the use of allogeneic hematopoietic stem cell transplantation (HSCT) for autoimmune neurological diseases. In this report, we present a pediatric case successfully treated with allogeneic HSCT from an HLA‐haploidentical donor, after ex vivo TCR/CD19‐depletion of the graft. To the best of our knowledge, this is the first case of a pediatric patient to benefit from such a treatment.
    Type of Medium: Online Resource
    ISSN: 2328-9503 , 2328-9503
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2740696-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2015
    In:  Journal of Hematology & Oncology Vol. 8, No. 1 ( 2015-12)
    In: Journal of Hematology & Oncology, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2015-12)
    Type of Medium: Online Resource
    ISSN: 1756-8722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2429631-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2286-2286
    Abstract: Background: Allogeneic HSCT from either an HLA-identical sibling or an unrelated donor is a potentially curative treatment for patients with hemoglobinopathies and erythroid disorders (ED), such as Thalassemia Major (TM), Sickle Cell Disease (SCD) and Diamond-Blackfan Anemia (DBA). The limited historical experience with HLA-haploidentical HSCT in this setting has reported a disease-free survival probability lower than that reported using HLA-matched donors. In the last few years, we have developed a novel method of graft manipulation, based on the selective depletion of α/β+ T-cells and CD19+ B-cells (ClinicalTrial.gov identifier: NCT01810120), which was shown to be safe and effective in children with multiple types of non-malignant disorders (Bertaina el al, Blood 2014). To further optimize this approach through the acceleration of the recovery of adaptive immunity, we designed an ongoing phase I/II trial aimed to test the safety and efficacy of post-transplant infusion of donor T-cells transduced with the iC9 suicide gene (BPX-501 cells) in children with either malignant or non-malignant disorders (ClinicalTrials.gov identifier: NCT02065869). As the transduced gene contains sequences for the CD19 marker, BPX-501 cells (CD3+/CD19+) can be easily tracked in peripheral blood. We report on 10 children with hemoglobinopathies and ED who were enrolled in the phase II portion of the study. Patients and methods: Five patients were males and 5 were females, and median age at diagnosis and at HSCT was 5.34 and 9.52 years (range 2.33-11.71), respectively. Seven patients had TM (all bo/bo), 2 DBA and 1 SCD. All 10 patients were transfusion-dependent and receiving iron-chelation therapy before haplo-HSCT. Among the thalassemia patients, 4 patients belonged to class I and 3 to class II of the Pesaro classification. All patients were transplanted from a parent. Median number of CD34+ and αβ+ T-cells infused was 22.5 x 106/kg and 0.3 x 105/kg, respectively. In all patients, conditioning regimen included busulfan (16 mg/Kg), thiotepa (10 mg/Kg) and fludarabine (160 mg/m2). Rabbit ATG (12 mg/Kg over 3 days, from day -4 to day -2) was administered to prevent graft-versus-host disease (GvHD) and graft failure and Rituximab (200 mg/ m2 on day -1) was administered to prevent EBV-related lymphoproliferative disorders. No post-transplantation GvHD prophylaxis was given. Median follow-up is 301 days (range 41-420 days). Basic phenotyping of circulating lymphocytes was assessed by flow cytometry on fresh heparinized peripheral blood samples at 10, 20, 30, 60, 90, 120 and 150 days post haplo-HSCT. Results: After haplo-HSCT, the median time to reach neutrophil and platelet recovery was 14 days (range 11-28) and 10 days (range 8-12), respectively. After engraftment of the allograft, BPX-501 cells were infused (dose: 1x106 cells/kg) at a median time of 13.5 days after HSCT (range 10-26). Nine of the 10 patients maintained sustained donor engraftment, reaching full chimerism. The patient who experienced secondary graft failure was successfully re-transplanted from the same parent and he is full donor chimeric with transfusion-independence. Grade I/II skin acute GvHD occurred in 2 patients (at 31 and 59 days after HSCT, respectively). There was no occurrence of chronic GVHD. Remarkably, no patient has died and none of the patients have been re-hospitalized after initial discharge. The last erythrocyte transfusion was administered on day +7 post-transplant (range 4-33 days). At last follow-up, the median hemoglobin value of these patients was 11.35 gr/dL (range 10.2-13.4). BPX-501 cells expanded after infusion and still persist in all patients at last follow-up. All children are alive and transfusion-independent. Details on T cell, NK cell and B cell recovery are shown in Figure 1 (Panel A-D). Conclusions: Children with hemoglobinopathies and DBA can benefit from curative haplo-HSCT after depletion of α/β T-cells followed by infusion of BPX-501 cells, which, expanding and persisting over time, contribute to speed immune recovery of adaptive T-cell immunity, thus rendering the procedure safer. Figure 1 Figure 1. Disclosures French: Bellicum Pharmaceuticals: Employment, Membership on an entity's Board of Directors or advisory committees. Moseley:Bellicum Pharmaceuticals: Employment, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4299-4299
    Abstract: Background: T-cell depleted haplo-HSCT is an established treatment for children with primary immune deficiencies (PID). However, children given this type of allograft are exposed to the risk of fatal events due to viral infections because of the prolonged impairment of adaptive immunity. We recently developed a novel method of selective T-cell depletion based on physical elimination of α/β T cells (ClinicalTrial.gov identifier: NCT01810120), which was shown to be safe and more effective than transplantation of positively-selected CD34+ cells for preventing life-threatening infections. However, we recorded some severe and even fatal viral infections, which prompted us to explore innovative approaches to accelerate the recovery of adaptive immunity. For this purpose, we designed an ongoing phase I/II trial aimed at testing the safety and the efficacy of post-transplant infusion of BPX-501 cells in children with malignant or non-malignant disorders (ClinicalTrials.gov identifier: NCT02065869). We report 3 cases of children with either severe combined immune deficiency (SCID) or Wiskott-Aldrich syndrome (WAS), who were enrolled in the dose escalation phase of the study and who cleared cytomegalovirus (CMV) or Adenovirus (AdV) infections likely due to the contribution of the BPX-501 cells. Patients and methods: Patient #1, affected by SCID, was transplanted from the HLA-haploidentical father. Before transplantation she had CMV-DNAemia which was treated with ganciclovir until donor stem cell infusion. She was given 2.5 x 105/kg BPX-501 cells on day 17 after transplantation. Patient #2, also affected by SCID, was transplanted from the HLA-haploidentical mother. Before transplantation she had AdV-DNAemia and high load of the virus in stools. She was given 5 x 105/kg BPX-501 cells on day 15 after transplantation. Patient #3 was affected by WAS and referred to the transplant unit; in the months preceding haplo-HSCT the child had developed CMV retinitis and hepatitis with high levels of CMV-DNAemia. This patient was transplanted from the father and received 1 x 106/kg BPX-501 cells on day 15 after haplo-HSCT. Basic phenotype of circulating lymphocytes was assessed by flow cytometry on fresh heparinized peripheral blood samples at 10, 20, 30, 60, 90, 120 and 150 days post haplo-HSCT, respectively. Since BPX-501 cells are CD3+/CD19+, it was easy to track the presence of these genetically modified cells. CMV specific reconstitution was also monitored through the INF gamma ELISPOT assay. In particular, peripheral blood mononuclear cells were stimulated for 16hrs in the presence of peptide libraries derived from pp65, IE1 and IE2 CMV-specific antigens. Results: The increase in the number of both CD3+ T lymphocytes and BPX-501 cells over time after transplantation together with the modifications of DNAemia of both CMV and AdV in the 3 patients are reported in Panel A, B and C, respectively, of Figure 1. In all of these patients, the pre-existing viral infection was progressively cleared once the BPX-501 cells were infused. These cells expanded in vivo and are still persisting, contributing to the recovery of adoptive immunity. The median time to reach an absolute number of α/β CD3+ cells greater than 0.5x109/L was 90, 90 and 30 days, respectively. None of these patients experienced either acute or chronic Graft-versus-Host Disease (GvHD) and no organ inflammatory-related toxicity was recorded. All children are alive and disease free, without infections, at day +200, +180 and +160, respectively. The 2 patients with CMV infection showed a specific response for at least one CMV-derived antigen; indeed, one patient showed a prevalence in pp65 response, whereas in the second one, we observed a specific anti-CMV response against all three tested antigens (Figure 1 - Panel D). Conclusions: Infusion of BPX-501 cells is able to accelerate the recovery of adaptive T-cell immunity in children with PID given haplo-HSCT after depletion of α/β T cells, thus rendering the procedure safer even in children with active infections at time of transplantation. These cells, once infused, expand in vivo and persist over time, contributing to the clearance of viral infections, without inducing GvHD. Figure 1. Figure 1. Disclosures Moseley: Bellicum Pharmaceuticals: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...