GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (99)
Material
Language
Years
  • 2015-2019  (99)
Year
  • 11
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Nature Communications Vol. 9, No. 1 ( 2018-07-05)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-07-05)
    Abstract: Metal dissolution from atmospheric aerosol deposition to the oceans is important in enhancing and inhibiting phytoplankton growth rates and modifying plankton community structure, thus impacting marine biogeochemistry. Here we review the current state of knowledge on the causes and effects of the leaching of multiple trace metals from natural and anthropogenic aerosols. Aerosol deposition is considered both on short timescales over which phytoplankton respond directly to aerosol metal inputs, as well as longer timescales over which biogeochemical cycles are affected by aerosols.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 376, No. 2122 ( 2018-06-28), p. 20170177-
    Abstract: New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 – uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012–2014. Net seasonal-scale changes in water column inventories (0–150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways. This article is part of the theme issue ‘The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Atmospheric Science Letters, Wiley, Vol. 19, No. 8 ( 2018-08)
    Abstract: Measurements of nitryl chloride (ClNO 2 ) and its precursors (O 3 , NO 2 , particulate chloride) were made in 2014–2016 at three contrasting locations in the United Kingdom: Leicester, Penlee Point and Weybourne. ClNO 2 was observed at all sites and in every season, with the highest concentrations between 00:00 and 04:00 GMT. The median nocturnal concentration of ClNO 2 ranged between the detection limit (4.2 ppt) and 139 ppt. A clear seasonal cycle, with maxima in spring and winter, and significant differences between locations in the same season were observed. The main source of particulate chloride was sea salt aerosol (including at Leicester, ∼200 km from the coast). In general, ClNO 2 levels were controlled by the concentrations of O 3 and NO 2 , rather than by the uptake and reaction of N 2 O 5 with particulate chloride. Under these conditions, the seasonality and geographical distribution of ClNO 2 can be explained in terms of O 3 ‐limited and NO 2 ‐limited regimes affecting the formation of the N 2 O 5 precursor. A global version of the GEOS‐Chem model at medium resolution (2° × 2.5°) was not able to fully capture the observed seasonality of ClNO 2 , mostly because the model overestimated the concentrations of the precursors, particularly of nocturnal O 3 . A higher‐resolution (0.25° × 0.3125°) version of GEOS‐Chem showed better agreement with the observations, although it still overestimated ClNO 2 concentrations during summer.
    Type of Medium: Online Resource
    ISSN: 1530-261X , 1530-261X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2025884-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-01-19)
    Abstract: Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region ( 〈 0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m −2 d −1 ) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    Elsevier BV ; 2017
    In:  Progress in Oceanography Vol. 158 ( 2017-11), p. 41-51
    In: Progress in Oceanography, Elsevier BV, Vol. 158 ( 2017-11), p. 41-51
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Biogeosciences, Copernicus GmbH, Vol. 15, No. 21 ( 2018-11-09), p. 6659-6684
    Abstract: Abstract. This work reports on the current status of the global modeling of iron (Fe) deposition fluxes and atmospheric concentrations and the analyses of the differences between models, as well as between models and observations. A total of four global 3-D chemistry transport (CTMs) and general circulation (GCMs) models participated in this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 38, “The Atmospheric Input of Chemicals to the Ocean”. The global total Fe (TFe) emission strength in the models is equal to ∼72 Tg Fe yr−1 (38–134 Tg Fe yr−1) from mineral dust sources and around 2.1 Tg Fe yr−1 (1.8–2.7 Tg Fe yr−1) from combustion processes (the sum of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) Tg Fe yr−1, accounting for both mineral dust and combustion aerosols. The mean global deposition fluxes into the global ocean are estimated to be in the range of 10–30 and 0.2–0.4 Tg Fe yr−1 for TFe and LFe, respectively, which roughly corresponds to a respective 15 and 0.3 Tg Fe yr−1 for the multi-model ensemble model mean. The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of atmospheric processing parameterizations of Fe-containing aerosols. The model comparison with aerosol Fe observations over oceanic regions indicates that most models overestimate surface level TFe mass concentrations near dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. All models are able to simulate the tendency of higher Fe concentrations near and downwind from the dust source regions, with the mean normalized bias for the Northern Hemisphere (∼14), larger than that of the Southern Hemisphere (∼2.4) for the ensemble model mean. This model intercomparison and model–observation comparison study reveals two critical issues in LFe simulations that require further exploration: (1) the Fe-containing aerosol size distribution and (2) the relative contribution of dust and combustion sources of Fe to labile Fe in atmospheric aerosols over the remote oceanic regions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Biogeosciences Vol. 13, No. 24 ( 2016-12-15), p. 6519-6543
    In: Biogeosciences, Copernicus GmbH, Vol. 13, No. 24 ( 2016-12-15), p. 6519-6543
    Abstract: Abstract. The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr−1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr−1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr−1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total bioavailable P flux of about 0.17 Tg-P yr−1 to the oceans is derived. Our calculations further show that in some regions more than half of the bioavailable P deposition flux to the ocean can originate from biological particles, while this contribution is found to maximize in summer when atmospheric deposition impact on the marine ecosystem is the highest due to ocean stratification. Thus, according to this global study, a largely unknown but potentially important role of terrestrial bioaerosols as suppliers of bioavailable P to the global ocean is also revealed. Overall, this work provides new insights to the atmospheric P cycle by demonstrating that biological materials are important carriers of bioavailable P, with very important implications for past and future responses of marine ecosystems to global change.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    The Royal Society ; 2018
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 285, No. 1893 ( 2018-12-19), p. 20182255-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 285, No. 1893 ( 2018-12-19), p. 20182255-
    Abstract: There is increasing evidence for a strong genetic basis for autism, with many genetic models being developed in an attempt to replicate autistic symptoms in animals. However, current animal behaviour paradigms rarely match the social and cognitive behaviours exhibited by autistic individuals. Here, we instead assay another functional domain—sensory processing—known to be affected in autism to test a novel genetic autism model in Drosophila melanogaster . We show similar visual response alterations and a similar development trajectory in Nhe3 mutant flies (total n = 72) and in autistic human participants (total n = 154). We report a dissociation between first- and second-order electrophysiological visual responses to steady-state stimulation in adult mutant fruit flies that is strikingly similar to the response pattern in human adults with ASD as well as that of a large sample of neurotypical individuals with high numbers of autistic traits. We explain this as a genetically driven, selective signalling alteration in transient visual dynamics. In contrast to adults, autistic children show a decrease in the first-order response that is matched by the fruit fly model, suggesting that a compensatory change in processing occurs during development. Our results provide the first animal model of autism comprising a differential developmental phenotype in visual processing.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    SAGE Publications ; 2015
    In:  Crime & Delinquency Vol. 61, No. 8 ( 2015-10), p. 1078-1103
    In: Crime & Delinquency, SAGE Publications, Vol. 61, No. 8 ( 2015-10), p. 1078-1103
    Abstract: The intermittency, or time gaps between criminal events, has received very little theoretical and empirical attention in developmental/life-course criminology. Several reasons account for lack of research on intermittency, including limited data sources containing information on the time between events and the prioritization of persistence—and especially desistance—in developmental/life-course criminology. This article sets out to provide a descriptive portrait of intermittency and in so doing aims to understand and explain intermittency within and between individuals, how it varies with age over the life course, and how it covaries with the seriousness of offending. Longer intermittency is characteristic of offenders with earlier onset as well as those who offend less frequently, whereas high-frequency/early-onset offenders have less intermittency. Findings suggest that intermittent gaps between offenses relate to offense seriousness. As offenders age, the gaps between offenses increase. Each of these effects is disaggregated among chronic and nonchronic (recidivist) offenders to demonstrate the intermittent patterns of different criminal careers. Implications for theoretical and empirical research on intermittency are highlighted.
    Type of Medium: Online Resource
    ISSN: 0011-1287 , 1552-387X
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2015
    detail.hit.zdb_id: 1499997-3
    SSG: 2
    SSG: 2,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 5 ( 2019-03-12), p. 3161-3189
    Abstract: Abstract. This study investigates the impact of reactive halogen species (RHS, containing chlorine (Cl), bromine (Br) or iodine (I)) on atmospheric chemistry in the tropical troposphere and explores the sensitivity to uncertainties in the fluxes of RHS to the atmosphere and their chemical processing. To do this, the regional chemistry transport model WRF-Chem has been extended to include Br and I, as well as Cl chemistry for the first time, including heterogeneous recycling reactions involving sea-salt aerosol and other particles, reactions of Br and Cl with volatile organic compounds (VOCs), along with oceanic emissions of halocarbons, VOCs and inorganic iodine. The study focuses on the tropical east Pacific using field observations from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) campaign (January–February 2012) to evaluate the model performance. Including all the new processes, the model does a reasonable job reproducing the observed mixing ratios of bromine oxide (BrO) and iodine oxide (IO), albeit with some discrepancies, some of which can be attributed to difficulties in the model's ability to reproduce the observed halocarbons. This is somewhat expected given the large uncertainties in the air–sea fluxes of the halocarbons in a region where there are few observations of their seawater concentrations. We see a considerable impact on the inorganic bromine (Bry) partitioning when heterogeneous chemistry is included, with a greater proportion of the Bry in active forms such as BrO, HOBr and dihalogens. Including debromination of sea salt increases BrO slightly throughout the free troposphere, but in the tropical marine boundary layer, where the sea-salt particles are plentiful and relatively acidic, debromination leads to overestimation of the observed BrO. However, it should be noted that the modelled BrO was extremely sensitive to the inclusion of reactions between Br and the oxygenated VOCs (OVOCs), which convert Br to HBr, a far less reactive form of Bry. Excluding these reactions leads to modelled BrO mixing ratios greater than observed. The reactions between Br and aldehydes were found to be particularly important, despite the model underestimating the amount of aldehydes observed in the atmosphere. There are only small changes to the inorganic iodine (Iy) partitioning and IO when the heterogeneous reactions, primarily on sea salt, are included. Our model results show that tropospheric Ox loss due to halogens ranges between 25 % and 60 %. Uncertainties in the heterogeneous chemistry accounted for a small proportion of this range (25 % to 31 %). This range is in good agreement with other estimates from state-of-the-art atmospheric chemistry models. The upper bound is found when reactions between Br and Cl with VOCs are not included and, consequently, Ox loss by BrOx, ClOx and IOx cycles is high (60 %). With the inclusion of halogens in the troposphere, O3 is reduced by 7 ppbv on average. However, when reactions between Br and Cl with VOCs are not included, O3 is much lower than observed. Therefore, the tropospheric Ox budget is highly sensitive to the inclusion of halogen reactions with VOCs and to the uncertainties in current understanding of these reactions and the abundance of VOCs in the remote marine atmosphere.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...