GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (4)
  • 2015-2019  (4)
  • 1
    Publication Date: 2021-05-07
    Description: Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle. However, the mechanisms of denitrification in foraminifera are still unknown, and the possibility of a contribution of associated bacteria is debated. Here, we present evidence for a novel eukaryotic denitrification pathway that is encoded in foraminiferal genomes. Large-scale genome and transcriptomes analyses reveal the presence of a denitrification pathway in foraminifera species of the genus Globobulimina. This includes the enzymes nitrite reductase (NirK) and nitric oxide reductase (Nor) as well as a wide range of nitrate transporters (Nrt). A phylogenetic reconstruction of the enzymes' evolutionary history uncovers evidence for an ancient acquisition of the foraminiferal denitrification pathway from prokaryotes. We propose a model for denitrification in foraminifera, where a common electron transport chain is used for anaerobic and aerobic respiration. The evolution of hybrid respiration in foraminifera likely contributed to their ecological success, which is well documented in palaeontological records since the Cambrian period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors—nitrate (NO3−) or oxygen (O2)—makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3− metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3− storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3− availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3− availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3− is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3− and O2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cushman Foundation for Foraminiferal Research
    In:  Journal of Foraminiferal Research, 49 (1). pp. 66-75.
    Publication Date: 2022-01-31
    Description: Studies of carnivorous behaviour of benthic foraminifers are rare and mostly focused on laboratory experiments. Controlled experiments have shown that some agglutinated and intertidal species prey on meio- to macrofaunal metazoans. Here we present observations of the behaviour of specimens of the infaunal benthic foraminiferal species, Globobulimina auriculata and G. turgida, made within several hours of collection from ∼117 m depth in the Alsbäck Deep of the Gullmar Fjord, Sweden. We observed live nematodes within the tests of G. auriculata. Video observations recorded over a 17-hour period showed a G. auriculata specimen with a living nematode whose tail appeared to be entangled within the foraminifer's reticulopodial network. The nematode eventually coiled around the foraminifer's aperture and became much less active, though ingestion into the foraminifer's test was not documented. If these observations indicate feeding by G. auriculata, they differ from previous observations of predation by Ammonia tepida, which utilised external reticulopodial activity to extract the soft tissue of its prey. An alternative interpretation of the video observations, consistent with the observations of the live nematodes inside G. auriculata, was that the nematode was attempting to prey upon the foraminifer. The G. turgida specimens, in contrast, relatively quickly surrounded themselves in soft sediment spheres commonly seen in deposit-feeding foraminifers, and were never observed with nematodes within their tests. We speculate that these contrasting feeding strategies might reduce competition and facilitate the coexistence of these two globobuliminid species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...