GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2015-2019  (2)
Document type
  • Articles  (2)
Source
Years
Year
Topic
  • 1
    Publication Date: 2016-01-16
    Description: Purpose: Prostate cancers incite tremendous morbidity upon metastatic growth. We previously identified Asporin (ASPN) as a potential mediator of metastatic progression found within the tumor microenvironment. ASPN contains an aspartic acid (D)-repeat domain and germline polymorphisms in D-repeat-length have been associated with degenerative diseases. Associations of germline ASPN D polymorphisms with risk of prostate cancer progression to metastatic disease have not been assessed. Experimental Design: Germline ASPN D-repeat-length was retrospectively analyzed in 1,600 men who underwent radical prostatectomy for clinically localized prostate cancer and in 548 noncancer controls. Multivariable Cox proportional hazards models were used to test the associations of ASPN variations with risk of subsequent oncologic outcomes, including metastasis. Orthotopic xenografts were used to establish allele- and stroma-specific roles for ASPN D variants in metastatic prostate cancer. Results: Variation at the ASPN D locus was differentially associated with poorer oncologic outcomes. ASPN D14 [HR, 1.72; 95% confidence interval (CI), 1.05–2.81, P = 0.032] and heterozygosity for ASPN D13/14 (HR, 1.86; 95% CI, 1.03–3.35, P = 0.040) were significantly associated with metastatic recurrence, while homozygosity for the ASPN D13 variant was significantly associated with a reduced risk of metastatic recurrence (HR, 0.44; 95% CI, 0.21–0.94, P = 0.035) in multivariable analyses. Orthotopic xenografts established biologic roles for ASPN D14 and ASPN D13 variants in metastatic prostate cancer progression that were consistent with patient-based data. Conclusions: We observed associations between ASPN D variants and oncologic outcomes, including metastasis. Our data suggest that ASPN expressed in the tumor microenvironment is a heritable modulator of metastatic progression. Clin Cancer Res; 22(2); 448–58. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-16
    Description: Prostate cancer is a leading cause of cancer death in men due to the subset of cancers that progress to metastasis. Prostate cancers are thought to be hardwired to androgen receptor (AR) signaling, but AR-regulated changes in the prostate that facilitate metastasis remain poorly understood. We previously noted a marked reduction in secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) expression during invasive phases of androgen-induced prostate growth, suggesting that this may be a novel invasive program governed by AR. Herein, we show that SPARCL1 loss occurs concurrently with AR amplification or overexpression in patient-based data. Mechanistically, we demonstrate that SPARCL1 expression is directly suppressed by androgen-induced AR activation and binding at the SPARCL1 locus via an epigenetic mechanism, and these events can be pharmacologically attenuated with either AR antagonists or HDAC inhibitors. We establish using the Hi-Myc model of prostate cancer that in Hi-Myc/Sparcl1−/− mice, SPARCL1 functions to suppress cancer formation. Moreover, metastatic progression of Myc-CaP orthotopic allografts is restricted by SPARCL1 in the tumor microenvironment. Specifically, we show that SPARCL1 both tethers to collagen in the extracellular matrix (ECM) and binds to the cell's cytoskeleton. SPARCL1 directly inhibits the assembly of focal adhesions, thereby constraining the transmission of cell traction forces. Our findings establish a new insight into AR-regulated prostate epithelial movement and provide a novel framework whereby SPARCL1 in the ECM microenvironment restricts tumor progression by regulating the initiation of the network of physical forces that may be required for metastatic invasion of prostate cancer. Cancer Res; 75(20); 4322–34. ©2015 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...