GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kilo Moana (Ship) Cruise KM1128  (1)
  • Modeling  (1)
  • 2015-2019  (2)
Document type
Keywords
Years
  • 2015-2019  (2)
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Although over a dozen elements are needed to support phytoplankton growth, only a few are considered to be growth-limiting. As the central atom in vitamin B12, cobalt is crucial for metabolism, but its status as a limiting nutrient is uncertain. This thesis investigates the geochemical controls on oceanic cobalt scarcity and their biological consequences. Analysis of over 1000 samples collected in the Tropical Pacific Ocean reveals a dissolved cobalt distribution that is strongly coupled to dissolved oxygen, with peak concentrations where oxygen is lowest. Large cobalt plumes within anoxic waters are maintained by three processes: 1) a cobalt supply from organic matter remineralization, 2) an amplified sedimentary source from oxygen-depleted coastlines, and 3) low-oxygen inhibition of manganese oxidation, which scavenges cobalt from the water column. Rates of scavenging are calculated from a global synthesis of recent GEOTRACES data and agree with cobalt accumulation rates in pelagic sediments. Because both sources and sinks are tied to the extent of oxygen minimum zones, oceanic cobalt inventories are likely dynamic on the span of decades. Despite extremely low cobalt in the South Pacific gyre, the cyanobacterium Prochlorococcus thrives. Minimum cobalt and iron requirements of a Prochlorococcus strain isolated from the Equatorial Pacific are quantified. Cobalt quotas are related to demand for ribonucleotide reductase and methionine synthase enzymes, which catalyze critical steps in DNA and protein biosynthesis, respectively. Compared to other cyanobacteria, a streamlined metal physiology makes Prochlorococcus susceptible to competitive inhibition of cobalt uptake by low levels of zinc. Although phytoplankton in the Equatorial Pacific are subject to chronic iron-limitation, widespread cobalt scarcity and vulnerability to zinc inhibition observed in culture imply that wild Prochlorococcus are not far from a cobalt-limitation threshold.
    Description: I am lucky to have benefitted from major financial support of the Saito Lab by the National Science Foundation and the Gordon and Betty Moore Foundation. Specifically, National Science Foundation grants for the Center for Microbial Oceanography Research and Education (CMORE, DBI-0424599), GEOTRACES Pacific and Artic projects (OCE-1233261 and OCE- 1540254), and OCE-1220484 funded my thesis work. National Science Foundation grants OCE- 1031271 and OCE-1337780 and Gordon and Betty Moore Foundation grants 3782 and 3934 to the Saito lab also provided instrumentation and funded field expeditions that enabled this work.
    Keywords: Cobalt ; Zinc ; Plankton ; Kilo Moana (Ship) Cruise KM1128
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 594-616, doi:10.1002/2017GB005830.
    Description: Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co‐factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state‐of‐the‐art three‐dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of 〉0.7 in the surface and 〉0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom‐water oxygen conditions. The basin‐scale distribution of cobalt supplied from margins is facilitated by the activity of manganese‐oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) Grant Number: 724289; Natural Environment Research Council (NERC) Grant Number: NE/N001079/1; Gordon and Betty Moore Foundation Grant Number: 3738; NSF OCE Grant Numbers: 0929919, 0752832, 0649639, 0223378, 1658030, 1736599; NERC Grant Number: NE/N001079/1; European Research Council Grant Number: 724289
    Keywords: Biogeochemistry ; Trace elements ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...