GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: A fraction of the volcanic activity occurs intraplate, challenging our models of melting and magma transfer to the Earth's surface. A prominent example is Mt. Etna, eastern Sicily, offset from the asthenospheric tear below the Malta Escarpment proposed as its melt source. The nearby Hyblean volcanism, to the south, and the overall northward migration of the eastern Sicilian volcanism are also unexplained. Here we simulate crustal magma pathways beneath eastern Sicily, accounting for regional stresses and decompression due to the increase in the depth of the Malta Escarpment. We find non-vertical magma pathways, with the competition of tectonic and loading stresses controlling the trajectories' curvature and its change in time, causing the observed migration of volcanism. This suggests that the Hyblean and Etnean volcanism have been fed laterally from a melt pooling region below the Malta Escarpment. The case of eastern Sicily shows how the reconstruction of the evolution of magmatic provinces may require not only an assessment of the paleostresses, but also of the contribution of surface loads and their variations; at times, the latter may even prevail. Accounting for these competing stresses may help shed light on the distribution and wandering of intraplate volcanism
    Description: Published
    Description: 15-22
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: intraplate volcanism ; fault scarp ; dike propagation ; Malta Escarpment ; Hyblean volcanism ; Etna ; Mechanical models of magma transfer are used to backtrack the surface volcanism in Eastern Sicily. ; Our models account for regional stresses and decompression due to the deepening of the Malta Escarpment ; Both the Hyblean and Etnean volcanism has been laterally fed by a melt pooling region below the Malta Escarpment ; The Malta Escarpment played an active role in steering the shifting of Etnean and Hyblean volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-26
    Description: Some researchers view radon emissions as a precursor to earthquakes, especially those of high magnitude [e.g., Wang et al., 2014; Lombardi and Voltattorni, 2010], but the debate in the scientific community about the applicability of the gas to surveillance systems remains open. Yet radon “works” at Italy’s Mount Etna, one of the world’s most active volcanoes, although not specifically as a precursor to earthquakes. In a broader sense, this naturally radioactive gas from the decay of uranium in the soil, which has been analyzed at Etna in the past few years, acts as a tracer of eruptive activity and also, in some cases, of seismic–tectonic phenomena. To deepen the understanding of tectonic and eruptive phenomena at Etna, scientists analyzed radon escaping from the ground and compared those data with measurements gathered continuously by instrumental networks on the volcano. Here Etna is a boon to scientists—it’s traced by roads, making it easy to access for scientific observation. Dense monitoring networks, managed by the Istituto Nazionale di Geofisica e Vulcanologia, Catania–Osservatorio Etneo (INGV-OE), have been continuously observing the volcano for more than 40 years. This continuous dense monitoring made the volcano the perfect open-air laboratory for deciphering how eruptive activity may influence radon emissions.
    Description: This work was supported by the Mediterranean Supersite Volcanoes (MED-SUV) project, which has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 308665.
    Description: Published
    Description: 7
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Radon ; seismic activity ; Etna ; volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...