GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CaCO3  (1)
  • Cold-water corals  (1)
  • POC  (1)
  • 2015-2019  (2)
Document type
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 453 (2017): 146–168, doi:10.1016/j.chemgeo.2017.01.022.
    Description: Cold-water corals (CWCs) are unique archives of mid-depth ocean chemistry and have been used successfully to reconstruct the neodymium (Nd) isotopic composition of seawater from a number of species. High and variable Nd concentrations in fossil corals however pose the question as to how Nd is incorporated into their skeletons. We here present new results on modern specimens of Desmophyllum dianthus, Balanophyllia malouinensis, and Flabellum curvatum, collected from the Drake Passage, and Madrepora oculata, collected from the North Atlantic. All modern individuals were either collected alive or uranium-series dated to be 〈 500 years old for comparison with local surface sediments and seawater profiles. Modern coral Nd isotopic compositions generally agree with ambient seawater values, which in turn are consistent with previously published seawater analyses, supporting small vertical and lateral Nd isotope gradients in modern Drake Passage waters. Two Balanophyllia malouinensis specimens collected live however deviate by up to 0.6 epsilon units from ambient seawater. We therefore recommend that this species should be treated with caution for the reconstruction of past seawater Nd isotopic compositions. Seventy fossil Drake Passage CWCs were furthermore analysed for their Nd concentrations, revealing a large range from 7.3 to 964.5 ng/g. Samples of the species D. dianthus and Caryophyllia spp. show minor covariation of Nd with 232Th content, utilised to monitor contaminant phases in cleaned coral aragonite. Strong covariations between Nd and Th concentrations are however observed in the species B. malouinensis and G. antarctica. In order to better constrain the source and nature of Nd in the cleaned aragonitic skeletons, a subset of sixteen corals was investigated for its rare earth element (REE) content, as well as major and trace element geochemistry. Our new data provide supporting evidence that the applied cleaning protocol efficiently removes contaminant lithogenic and ferromanganese oxyhydroxide phases. Mass balance calculations and seawater-like REE patterns rule out lithogenic and ferromanganese oxyhydroxide phases as a major contributor to elevated Nd concentrations in coral aragonite. Based on mass balance considerations, geochemical evidence, and previously published independent work by solid-state nuclear magnetic resonance (NMR) spectroscopy, we suggest authigenic phosphate phases as a significant carrier of skeletal Nd. Such a carrier phase could explain sporadic appearance of high Nd concentrations in corals and would be coupled with seawater-derived Nd isotopic compositions, lending further confidence to the application of Nd isotopes as a water mass proxy in CWCs.
    Description: TvdF and TS acknowledge financial support for a bursary by the Grantham Institute of Climate Change and the Environment and a Marie Curie Reintegration grant (IRG 230828), as well as funding from the Leverhulme Trust (RPG-398) and the NERC (NE/N001141/1). Additional financial support was provided to LFR by the USGS-WHOI Co-operative agreement, NSF-ANT grants 0636787 and 80295700, The European Research Council, the Leverhulme Trust and a Marie Curie Reintegration grant. LB was supported by a NOAA/UCAR Climate and Global Change Postdoctoral Fellowship and KJM acknowledges funding from a Marie Curie International Outgoing fellowship (IOF 236962).
    Keywords: Neodymium isotopes ; Rare earth elements ; Cold-water corals ; Seawater ; Sediments ; Drake Passage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 116 (2015): 303-320, doi:10.1016/j.dsr2.2014.11.020.
    Description: The concentration and the major phase composition (particulate organic matter, CaCO3, opal, lithogenic matter, and iron and manganese oxyhydroxides) of marine particles is thought to determine the scavenging removal of particle-reactive TEIs. Particles are also the vector for transferring carbon from the atmosphere to the deep ocean via the biological carbon pump, and their composition may determine the efficiency and strength of this transfer. Here, we present the first full ocean depth section of size-fractionated (1–51 µm, 〉51 µm) suspended particulate matter (SPM) concentration and major phase composition from the US GEOTRACES North Atlantic Zonal Transect between Woods Hole, MA and Lisbon, Portugal conducted in 2010 and 2011. Several major particle features are notable in the section: intense benthic nepheloid layers were observed in the western North American margin with concentrations of SPM of up to 1648 µg/L, two to three orders of magnitude higher than surrounding waters, that were dominated by lithogenic material. A more moderate benthic nepheloid layer was also observed in the eastern Mauritanian margin (44 µg/L) that had a lower lithogenic content and, notably, significant concentrations of iron and manganese oxyhydroxides (2.5% each). An intermediate nepheloid layer reaching 102 µg/L, an order of magnitude above surrounding waters, was observed associated with the Mediterranean Outflow. Finally, there was a factor of two enhancement in SPM at the TAG hydrothermal plume due almost entirely to the addition of iron oxyhydroxides from the hydrothermal vent. We observe correlations between POC and CaCO3 in large (〉51 µm) particles in the upper 2000 m, but not deeper than 2000 m, and no correlations between POC and CaCO3 at any depth in small (〈51 µm) particles. There were also no correlations between POC and lithogenic material in large particles. Overall, there were very large uncertainties associated with all regression coefficients for mineral ballast (“carrying coefficients”), suggesting that mineral ballast was not a strong predictor for POC in this section.
    Description: US and International GEOTRACES Offices (NSF OCE-0850963 and OCE-1129603)
    Keywords: Particles ; SPM ; CaCO3 ; Opal ; Biogenic silica ; POC ; Ballast ; Dust ; Lithogenic material
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...