GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biogeochemical cycles  (1)
  • 2015-2019  (1)
Document type
Keywords
Years
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of American Chemical Society for personal use, not for redistribution. The definitive version was published in Environmental Science & Technology 46 (2012): 8601–8609, doi:10.1021/es301261x.
    Description: The extent to which humans are modifying Earth’s surface chemistry can be quantified by comparing total anthropogenic element fluxes with their natural counterparts (Klee & Graedel, 2004). We quantify anthropogenic mass transfer of 77 elements from mining, fossil fuel burning, biomass burning, construction activities, and human apportionment of terrestrial net primary productivity, and compare it to natural mass transfer from terrestrial and marine net primary productivity, riverine dissolved and suspended matter fluxes to the ocean, soil erosion, eolian dust, sea-salt spray, cosmic dust, volcanic emissions and – for helium – hydrodynamic escape from the Earth’s atmosphere. We introduce an approach to correct for losses during industrial processing of elements belonging to geochemically coherent groups, and explicitly incorporate uncertainties of element mass fluxes through Monte Carlo simulations. We find that at the Earth’s surface anthropogenic fluxes of iridium, osmium, helium, gold, ruthenium, antimony, platinum, palladium, rhenium, rhodium and chromium currently exceed natural fluxes. For these elements mining is the major factor of anthropogenic influence, whereas petroleum burning strongly influences the surficial cycle of rhenium. Our assessment indicates that if anthropogenic contributions to soil erosion and eolian dust are considered, anthropogenic fluxes of up to 62 elements surpass their corresponding natural fluxes.
    Description: I.S. is thankful for a Woods Hole Oceanographic Institution Postdoctoral Scholarship that supported this work. B.P.-E. acknowledges financial support from a Woods Hole Oceanographic Institution Coastal Ocean Institute Fellowship
    Keywords: Anthropocene ; Biogeochemical cycles ; Natural cycling ; Anthropogenic cycling
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...