GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry.  (3)
  • 2015-2019  (3)
Document type
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (240 pages)
    Edition: 1st ed.
    ISBN: 9780128023570
    Series Statement: Issn Series
    DDC: 547.78
    Language: English
    Note: Front Cover -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Reference -- Robert John (Robin) Ferrier -- Bibliography -- Chapter Two: Synthetic Approaches to l-Iduronic Acid and l-Idose: Key Building Blocks for the Preparation of Glycosaminog... -- 1. Introduction -- 1.1. Background -- 2. Epimerization at C-5 of d-Glucose Derivatives -- 2.1. SN2 Displacement of Sulfonates -- 2.2. The Mitsunobu Reaction -- 2.3. Epimerization via Generation of a C-5 Radical -- 3. Homologation of Tetroses and Pentoses -- 3.1. The Mukaiyama-Type Aldol Reaction -- 3.2. Diastereoselective Cyanohydrin Formation -- 3.3. Addition of Organometallic Reagents -- 3.4. Homologation Using 2-(Trimethylsilyl)thiazole -- 4. Isomerization of Unsaturated Sugars -- 4.1. Diastereoselective Hydroboration of exo-Glycals -- 4.2. From Delta4-Uronates -- 4.3. From 4-Deoxypentenosides -- 4.4. From d-Glucuronic Acid Glycal -- 5. Miscellaneous Methods -- 5.1. Diastereoselective Tishchenko Reaction -- 5.2. Homologation with 5,6-Dihydro-1,4-dithiin-2-yl[(4-methoxybenzyl)oxy]methane -- 5.3. C-H Activation of 6-Deoxy-l-hexoses -- 6. Conclusions -- Acknowledgments -- References -- Chapter Three: Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels -- 1. Introduction -- 2. Glycosylation of Cellulose-Degrading Enzymes -- 2.1. Introduction -- 2.2. Glycan Structures Found on TrCel7A and Additional Secreted Cellulases -- 2.3. Implications of N-Glycosylation of the TrCel7A Catalytic Domain -- 2.4. Implications of O-Glycosylation of TrCel7A Linker Domain -- 2.5. Implications of O-Glycosylation of the CBM -- 3. Recombinant Expression of Fungal Cellulases -- 3.1. Expression of T. reesei Cellulases in Saccharomyces cerevisiae -- 3.2. Glycoengineered Strains of and Heterologous Protein Expression in Pichia pastoris. , 3.3. Glycosylation and Engineering of Expressed Proteins in Aspergillus Species -- 4. Modifications by Glycan-Trimming Enzymes -- 4.1. Introduction -- 4.2. Secreted Glycan-Active α-Mannosidases from T. reesei -- 4.3. Secreted α-Mannosidases from Additional Fungi -- 4.4. endo-β-N-Acetylglucosaminidases Secreted by Fungi -- 5. Summary and Future Perspectives -- Acknowledgments -- Appendix 1. Molecular Dynamics Simulation of a Linker Interacting with Crystalline Cellulose -- References -- Chapter Four: Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis -- 1. Introduction -- 2. Structures of HMOS -- 2.1. HMOS Monosaccharide Building Blocks, Core Structures, and Glycosidic Linkages -- 2.2. HMOS Structures -- 3. Biosynthesis of HMOS -- 4. Functions of HMOS -- 4.1. Neutral Non-Fucosylated HMOS -- 4.2. Fucosylated HMOS -- 4.3. Sialylated HMOS -- 5. Production of HMOS by Enzyme-Catalyzed Processes -- 5.1. 2FL -- 5.2. 3SL and 3SLN -- 5.3. 6SL and 6SLN -- 5.4. LNT2, LNnT, LNnH, LNnO, LNnD, LSTd, and Disialyl Oligosaccharides -- 5.5. Fucα1-2LNnT -- 5.6. LNFP III, LNnFP V, and LNnDFH -- 5.7. LNT -- 5.8. 3FL, LDFT, LNFP II, Lea Tetrasaccharide, and LeX Tetrasaccharide -- 5.9. LNFP I and LNDFH I -- 5.10. Other Oligosaccharides -- 6. Perspectives -- Acknowledgments -- References -- Author Index -- Subject Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (358 pages)
    Edition: 1st ed.
    ISBN: 9780128099841
    Series Statement: Issn Series
    DDC: 547.78
    Language: English
    Note: Front Cover -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Stevia Glycosides: Chemical and Enzymatic Modifications of Their Carbohydrate Moieties to Improve the Sweet- ... -- 1. Introduction -- 2. Steviol Glycoside Structures from S. rebaudiana -- 3. Steviol Variants of Glycoside Structures from S. rebaudiana -- 4. Stability of Steviol Glycosides -- 5. Structure-Sweetness Relationship -- 6. Chemical Modifications of Steviol Glycosides -- 7. Enzymatic Modifications of Steviol Glycosides -- 7.1. Cyclodextrin Glycosyl Transferase Systems -- 7.2. α-Glucosidase Transglycosylation Systems -- 7.3. β-Glucosidase Transglycosylation and Deglycosylation Systems -- 7.4. α-Galactosidase Transglycosylation Systems -- 7.5. β-Galactosidase Transglycosylation Systems -- 7.6. β-Fructosidase Transglycosylation Systems -- 7.7. β-Glycosyltransferase Glycosylation Systems Using UDP-Sugars -- 8. Patents Regarding Enzymatic Modifications of Steviol Glycosides -- 9. Concluding Remarks -- Addendum -- Acknowledgments -- References -- Chapter Two: Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates -- 1. Introduction -- 1.1. Biological Functions of Glycans and Glycoconjugates -- 1.2. Synthetic Glycans and Glycoconjugates for Deciphering Functions -- 1.3. Enzymes as a Tool for the Synthesis of Glycans and Glycoconjugates -- 2. Endoglycosidases in the Synthesis of Natural and Artificial Polysaccharides -- 2.1. Synthesis of Artificial Cellulose and Derivatives via Enzymatic Polymerization of Glycosyl Fluorides Catalyzed by Ce ... -- 2.2. Chitinase-Catalyzed Synthesis of Artificial Chitin and Derivatives Using Sugar Oxazolines as Activated Substrates -- 2.3. Hyaluronidase-Catalyzed Construction of Glycosaminoglycans Using Sugar Oxazoline as the Activated Substrates. , 2.4. Endo-β-Xylosidase-Catalyzed Transglycosylation in the Synthesis of Proteoglycans -- 3. Endoglycosidases in the Synthesis of N-Glycopeptides and N-Glycoproteins -- 3.1. Exploration of Glycan Oxazolines as Donor Substrates for ENGase-Catalyzed Synthesis of Complex Glycopeptides and Gly ... -- 3.2. Generation of ENGase-Based Glycosynthases for Transglycosylation -- 3.3. ENGase-Catalyzed Synthesis of Selected Biologically Interesting Glycopeptides and Glycoproteins -- 3.4. ENGase-Catalyzed Transglycosylation for Glycosylation Remodeling of Therapeutic Monoclonal Antibodies -- 4. Endoglycosidases for the Synthesis of Neoglycolipids and Glycosphingolipids -- 4.1. Ceramide Glycanase-Catalyzed Transglycosylation for Glycolipid Synthesis -- 4.2. Endoglycoceramidase-Based Glycosynthase for the Synthesis of Glycosphingolipids -- 5. Concluding Remarks -- Acknowledgment -- References -- Chapter Three: Recent Advances Toward Robust N-Protecting Groups for Glucosamine as Required for Glycosylation Strategies -- 1. Introduction -- 2. The Glycosylation Reaction -- 3. Acyclic N-Protecting Groups -- 3.1. The Acetyl (Ac) Group -- 3.2. The Diacetyl [-N(Ac)2] Group -- 3.3. The Chloroacetyl (ClCH2CO) Group -- 3.4. The Dichloroacetyl Group -- 3.5. The Trichloroacetyl (TCA) and Trifluoroacetyl (TFA) Groups -- 3.6. The Pent-4-enoyl Group -- 3.7. The Trichloroethoxycarbonyl (Teoc) Group -- 3.8. The 2,2,2-Trichloro-1,1-dimethylethyloxycarbonyl (TCBOC) Group -- 3.9. The Allyloxycarbonyl (AOC) Group -- 3.10. The Benzyloxycarbonyl (Cbz or Z) Group -- 3.11. The p-Nitrobenzyloxycarbonyl (PNZ) Group -- 3.12. The Methoxycarbonyl Group -- 3.13. The Ethoxycarbonyl, Chloroethyloxycarbonyl, and Phenyloxycarbonyl Groups -- 3.14. The (1,3-Dimethyl-2,4,6-(1H,3H,5H)-trioxopyrimidin-5-ylidene)methyl (DTPM) Group -- 3.15. The 4,4-Dimethyl-2,6-dioxocyclohexylidenemethyl (Dde) Group. , 3.16. The N-2,4-Dinitrophenyl (DNP) Group -- 3.17. The Diphenylphosphoryl (DPPO) and Dimethylphosphoryl (DMPO) Groups -- 3.18. The N-Alkylacetamido Groups -- 3.19. Fluorous-Protecting Groups (Froc) -- 4. Cyclic N-Protecting Groups -- 4.1. Oxazolines -- 4.1.1. Methyloxazoline -- 4.1.2. Phenyloxazoline -- 4.1.3. 2-Alkoxy Glyco-[2,1-d]-2-oxazolines -- 4.2. Nonparticipating Groups -- 4.2.1. The 2,3-Oxazolidinone Group -- 4.2.2. The 2,5-Dimethylpyrrole Group (DMP) -- 4.3. Participating Groups -- 4.3.1. Five-Membered Ring Groups -- 4.3.1.1. The Phthalimido Family -- 4.3.1.2. The Dithiasuccinyl Group (Dts) -- 4.3.1.3. The Dimethylmaleoyl (DMM) Group -- 4.3.1.3.1. Formation of β Glycosides -- 4.3.1.3.2. Transformation of N-DMM to NHAc -- 4.3.1.3.3. β-(1→4)-Mannosyl-Linked Chitobiose-Type Compounds -- 4.3.1.3.4. Glycolipid Synthesis -- 4.3.1.3.5. Glycosaminoglycan (GAG) Syntheses -- 4.3.1.3.6. N-DMM-Protected Glycosyl Iodides -- 4.3.1.3.7. N-DMM-Based Synthesis of Trehalosamines -- 4.3.1.3.8. Synthesis of Chitooligomers -- 4.3.1.3.9. Synthesis of Murin-Type Oligosaccharides -- 4.3.1.3.10. N-Glycan Syntheses -- 4.3.1.3.11. Human Milk Oligosaccharides (HMOs) -- 4.3.1.3.12. Galactofuranosyl-β-(1→4)-GlcNAc -- 4.3.1.3.13. Glycosylation of 3- and 4-OH-Free DMM-Protected d-Glucosamines and d-Allosamines -- 4.3.1.3.14. Solid-Phase Synthesis of N-Glycans and HMOs -- 4.3.1.4. The Diphenylmaleoyl (DPM) Group -- 4.3.2. Six-Membered Ring Groups -- 4.3.2.1. The Thiodiglycolyl (TDG) Group -- 4.3.2.2. The Dimethylglutaroyl (DMG) Group -- 4.3.2.3. The Diglycolyl (DG) Group -- 5. Latent Amino-Protecting Groups -- 5.1. The Azido Glycosylation Method -- 5.2. 2-Nitro Sugars -- 5.2.1. 2-Nitro Glycals -- 5.2.1.1. O-Glycosides via Michael-Type Addition -- 5.2.1.2. Synthesis of N-Nucleosides -- 5.2.1.3. Synthesis of Glycosyl Phosphonates. , 5.2.1.4. Synthesis of β-C-Glycosyl Compounds (``β-C-Glycosides´´) -- 5.2.2. 2-Nitro-1-thioglycosyl Donors -- 6. Conclusions -- Acknowledgments -- References -- Chapter Four: Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as ... -- 1. Introduction -- 2. Carbohydrate-Processing Enzymes of the Glycosphingolipid Degradation Pathway -- 2.1. Lysosomal β-d-Galactosidase -- 2.2. Lysosomal N-Acetyl-β-d-hexosaminidase -- 2.3. Lysosomal α-d-Galactosidase -- 2.4. Arylsulfatase A -- 2.5. Lysosomal β-d-Galactocerebrosidase -- 3. Lysosomal Glycogen Degradation and Glycogen Storage Disease -- 3.1. Lysosomal α-d-Glucosidase -- 4. Enzymes of the Glycoprotein Degradation Pathway and Glycoproteinoses -- 4.1. Lysosomal α-l-Fucosidase -- 4.2. Neuraminidase 1 -- 4.3. N-Acetyl-α-d-galactosaminidase -- 4.4. Lysosomal α-d-Mannosidase -- 4.5. Lysosomal β-d-Mannosidase -- 4.6. Aspartyl-N-acetyl-d-glucosaminidase -- 5. Enzymes Involved in Mucopolysaccharide Degradation and Mucopolysaccharidoses -- 5.1. Lysosomal α-l-Iduronidase -- 5.2. Lysosomal Heparan-N-sulfatase -- 5.3. Lysosomal N-Acetyl-α-d-glucosaminidase -- 5.4. Heparin Acetyl-CoA:α-d-glucosaminide-N-acetyltransferase -- 5.5. Lysosomal N-Acetyl-d-glucosamine-6-sulfatase -- 5.6. Lysosomal N-Acetyl-d-galactosamine-6-sulfatase -- 5.7. N-Acetyl-d-galactosamine-4-sulfatase (Arylsulfatase B) -- 5.8. Lysosomal β-Glucuronidase -- 5.9. Lysosomal Hyaluronidase -- 6. Conclusions and Outlook -- References -- Author Index -- Subject Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (288 pages)
    Edition: 1st ed.
    ISBN: 9780128121801
    Series Statement: Issn Series
    DDC: 547.78
    Language: English
    Note: Front Cover -- Advances in Carbohydrate Chemistry and Biochemistry -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Hyaluronan and Hyaluronan Fragments -- 1. Introduction -- 2. HA in the Solid State and at Surfaces -- 3. HA in Dilute and in Crowded Solutions -- 4. HA Self-association -- 5. HA Size and Why It Matters -- 5.1. High-Molecular-Mass HA Is the Physiological Protector of Cells -- 5.2. Low-Molecular-Mass HA Stimulates Defensive Cellular Responses -- 5.3. Mechanisms for HA Degradation -- 5.3.1. Hyaluronidases -- 5.3.2. Degradation of HA by ROS/RNS -- 5.3.3. Degradation of HA by Other Chemical and Physical Means -- 6. Experimental Determination of HA Content and Size In Vivo -- 6.1. Isolation Methods -- 6.2. Specific Quantification Methods -- 6.3. Methods for Molecular Mass Analysis -- 6.4. Experimental Findings on HA Content and Size -- 6.4.1. HA in Biological Fluids -- 6.4.2. HA in Tissues -- 7. Diagnostic and Therapeutic Applications -- 7.1. Exogenous HA -- 7.2. HA-Based Medical Diagnostics -- 7.3. Therapeutic Modulation of HA Signaling -- Acknowledgments -- References -- Chapter Two: Application of Porous Materials to Carbohydrate Chemistry and Glycoscience -- 1. Introduction -- 2. Glycoproteins, Glycans, and Glycosylation -- 3. Characteristics of Porous Materials -- 4. Methods for Characterizing Porous Materials -- 5. Glycan and Carbohydrate Enrichment -- 6. Mesoporous Silica and Related Materials -- 6.1. Basic Aspects of Mesoporous Silicas -- 6.2. General Applications of Mesoporous and Porous Silica to Glycans -- 6.3. Mesoporous and Porous Silicas Modified for Boronate Affinity Applications -- 6.4. Carbon-Mesoporous Silica Composites -- 6.5. Lectin-Modified Porous Silica -- 6.6. Controlled Release Applications Involving Mesoporous Silica and Glycans -- 7. Porous Alumina -- 8. Porous Titania -- 9. Mesoporous Carbon. , 10. Porous Graphitic Carbon -- 11. Porous Polymers Interacting With or Modified by Carbohydrates -- 11.1. Boronate-Modified Porous Polymers -- 11.2. Hydrophilic Interactions on Porous Polymers -- 11.3. Glycan Release by Enzyme-Modified Porous Polymers -- 11.4. Porous Polymers Modified by or Interacting With Lectins -- 12. Nanoporous Gold -- 13. Future Directions -- Acknowledgments -- References -- Chapter Three: The Synthesis and Biological Characterization of Acetal-Free Mimics of the Tumor-Associated Carbohydrate A ... -- 1. Introduction -- 2. Cancer and Immunotherapy -- 2.1. Overview -- 2.2. TACAs in Cancer -- 3. Synthesis of the Natural TACAs: Historical Overview -- 3.1. Tn Antigen -- 3.2. TF Antigen -- 3.3. sTn Antigen -- 4. Synthetic TACA Antigens as Potential Immunotherapeutics -- 4.1. Overview of Current State of TACA Therapies -- 4.2. Challenges in TACA Vaccine Preparation -- 4.3. Acetal-Free Carbohydrate Antigens -- 5. Synthesis of Carbasugars -- 5.1. Overview -- 5.2. Diels-Alder Approach -- 5.2.1. McCasland Synthesis -- 5.2.2. Ogawa Synthesis -- 5.3. Chemoenzymatic Processes -- 5.4. Ring-Closing Metathesis -- 5.5. Ferrier Type II Rearrangements -- 5.6. Radical Cyclization -- 6. Synthesis of C-Glycosides -- 6.1. Cross-Coupling -- 6.1.1. Heck Reaction -- 6.1.2. Suzuki-Miyaura Coupling -- 6.1.3. Negishi Coupling -- 6.2. Ring-Closing Metathesis -- 6.3. Radical Tethering -- 6.4. Allylation and Related Reactions -- 7. Synthesis of Acetal-Free Tn Antigens -- 8. Synthesis of Acetal-Free TF Antigens -- 9. Synthesis of Acetal-Free sTn Antigens -- 10. Partial Synthesis of Acetal-Free Sialyl Lewis Antigens -- 11. Biological Conjugation and Biological Evaluation of Acetal-Free Mimics -- 11.1. Tn Antigen -- 11.2. TF Antigen -- 11.3. sTn Antigen -- 12. Conclusions and Perspectives -- Acknowledgments -- References -- Author Index -- Subject Index. , Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...