GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Barium  (1)
  • Barium isotopic distributions  (1)
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters, 430 (2015): 511-522, doi:10.1016/j.epsl.2015.07.027.
    Description: The marine biogeochemical cycle of Ba is thought to be controlled by particulate BaSO4 (barite) precipitation associated with the microbial oxidation of organic carbon and its subsequent dissolution in the BaSO4-undersaturated water column. Despite many of these processes being largely unique to Ba cycling, concentrations of Ba and Si in seawater exhibit a strong linear correlation. The reasons for this correlation are ambiguous, as are the depth ranges corresponding to the most active BaSO4 cycling and the intermediate sources of Ba to particulate BaSO4. Stable isotopic analyses of dissolved Ba in seawater should help address these issues, as Ba-isotopic compositions are predicted to be sensitive to the physical and biogeochemical process that cycle Ba. We report a new methodology for the determination of dissolved Ba-isotopic compositions in seawater and results from a 4, 500 m depth profile in the South Atlantic at 39.99 S, 0.92 E that exhibit oceanographically-consistent variation with depth. These data reveal that water masses obtain their [Ba] and Ba-isotopic signatures when at or near the surface, which relates to the cycling of marine BaSO4. The shallow origin of these signatures requires that the substantial Ba-isotopic variations in the bathypelagic zone were inherited from when those deep waters were last ventilated. Indeed, the water column below 600 m is well explained by conservative mixing of water masses with distinct [Ba] and Ba-isotopic compositions. This leads us to conclude that large scale oceanic circulation is important for sustaining the similar oceanographic distributions of Ba and Si in the South Atlantic, and possibly elsewhere. These data demonstrate that the processes of organic carbon oxidation, BaSO4 cycling, and Ba-isotopic fractionation in seawater are closely coupled, such that Ba-isotopic analyses harbor great potential as a tracer of the carbon cycle in the modern and paleo-oceans.
    Description: T.J.H. acknowledges support from Makoto A. Saito (Gordon and Betty Moore Foundation; Project # 3782) and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation. Development of Ba-isotopic protocols at NIRVANA was made possible with funding from The Andrew W. Mellon Foundation Endowed Fund for Innovative Research (T.J.H. and S.G.N.).
    Keywords: Barium ; Isotopic fractionation ; Barite ; Seawater ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-31
    Description: Dataset: Particulate and dissolved Lake Superior geochemistry
    Description: Particles are important vectors of nutrients, carbon, and several trace metals within large bodies of water. Broadly speaking, particle distributions can be classified into three major groups on the basis of their multi-element geochemistry: biogenic (organic matter-associated phases and tests); lithogenic (highly refractory rock-derived materials); and authigenic (formed in situ below the euphotic zone). We collected particulate samples spanning the full water column of Lake Superior at Stations FWM (46.998528, -91.246250) and WM (47.331611, -89.821389) during the height of 2015 summer thermal stratification (cruise BH15-11). We analyzed particle leachates for their multi-element geochemistry using ICP-MS (inductively-coupled plasma mass spectrometry) at the Woods Hole Oceanographic Institution Plasma Facility. We report elemental concentrations in Lake Superior particulate matter in (nano or pico) moles per liter, defined by a 0.44 um filter cutoff. Lithogenic cycles are resolved by Al, Fe, Ti, V, and Y; biogenic phases by Ca, Cd, P, and Sr; and authigenic processes by Ba, Cd, and Mn. Several elements exhibit hybrid-type distributions depending on the depth range under investigation. Also reported are stable barium-isotopic distributions for particulate and total dissolvable Ba, measured using multiple-collector ICP-MS and reported relative to NIST SRM 3104a in permill. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/680091
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1430015, NSF Division of Ocean Sciences (NSF OCE) OCE-1443577
    Keywords: Lake Superior ; Particulate profiles ; Trace elements ; Barium isotopic distributions
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...