GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Antarctica  (1)
  • Avian  (1)
  • Demography
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 5 (2015): 1278–1290, doi:10.1002/ece3.1437.
    Description: Compound-specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC-D and Δ15NC-D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC-D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian-specific nitrogen trophic discrimination factor (TDFGlu-Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC-D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi-TDFGlu-Phe equation with the avian-specific TDFGlu-Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu-Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.
    Description: This research was funded by National Science Foundation Office of Polar Programs [grants ANT-0125098, ANT-0739575] and the 2013 Antarctic Science Bursaries.
    Keywords: Amino acid ; Avian ; Compound-specific stable isotope analysis ; Diet ; Fractionation ; Penguin ; Trophic position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6 (2015): art125, doi:10.1890/ES14-00287.1.
    Description: Closely related species with similar ecological requirements should exhibit segregation along spatial, temporal, or trophic niche axes to limit the degree of competitive overlap. For migratory marine organisms like seabirds, assessing such overlap during the non-breeding period is difficult because of long-distance dispersal to potentially diffuse foraging habitats. Miniaturization of geolocation devices and advances in stable isotope analysis (SIA), however, provide a robust toolset to quantitatively track the movements and foraging niches of wide ranging marine animals throughout much of their annual cycle. We used light-based geolocation tags and analyzed stable carbon and nitrogen isotopes from tail feathers to simultaneously characterize winter movements, habitat utilization, and overlap of spatial and isotopic niches of migratory chinstrap (Pygoscelis antarctica) and Adélie (P. adeliae) penguins during the austral winter of 2012. Chinstrap penguins exhibited a higher diversity of movements and occupied portions of the Southern Ocean from 138° W to 30° W within a narrow latitudinal band centered on 60° S. In contrast, all tracked Adélie penguins exhibited smaller-scale movements into the Weddell Sea and then generally along a counter-clockwise path as winter advanced. Inter-specific overlap during the non-breeding season was low except during the months immediately adjacent to the summer breeding season. Intra-specific overlap by chinstraps from adjacent breeding colonies was higher throughout the winter. Spatial segregation appears to be the primary mechanism to maintain inter- and intra-specific niche separation during the non-breeding season for chinstrap and Adélie penguins. Despite low spatial overlap, however, the data do suggest that a narrow pelagic corridor in the southern Scotia Sea hosted both chinstrap and Adélie penguins for most months of the year. Shared occupancy and similar isotopic signatures of the penguins in that region suggests that the potential for inter-specific competition persists during the winter months. Finally, we note that SIA was able to discriminate eastward versus westward migrations in penguins, suggesting that SIA of tail feathers may provide useful information on population-level distribution patterns for future studies.
    Description: Funds for the GLS tags were provided by the National Marine Sanctuary Foundation. Additional support for this project was provided by a Woods Hole Oceanographic Devonshire Scholarship as well as funding from the Ocean Life Institute and SeaWorld Bush Gardens Conservation Fund to MJP.
    Keywords: Antarctica ; Geolocation ; Migration ; Niche ; Pygoscelis adeliae ; Pygoscelis antarctica ; Stable isotope ; Winter
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...