GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (2)
  • 2015-2019  (2)
Document type
Years
Year
  • 1
    Publication Date: 2015-10-14
    Description: Declines in environmental calcium (Ca) and phosphorus (P) concentrations have occurred over the past 30 yrs in lakes across the Canadian Shield in southern Ontario, and these reductions appear to be placing strong constraints on populations of Daphnia in this region. Here, we report results from a factorial manipulation of Ca concentrations and food P content under controlled laboratory conditions where we measured resulting changes in daphnid elemental content, individual growth and survival, and life history traits related to population growth. We found significant effects of Ca- and P-limitation on all variables measured; however, dietary P explained a majority of the variation in daphnid nutrient content and growth. Dietary effects of low P [high food carbon (C): P ratios] on individual Daphnia life-history traits also translated into significant population level effects. Dietary P also explained relatively more experimental variation in population level responses than Ca concentrations. Experimental Ca concentrations most strongly altered daphnid survival partly due to the use of a lethally low Ca concentration in our experiment. Although recent work examining shifts in zooplankton communities in this region mainly focuses on the effects of Ca-limitation, we show that Ca concentrations and food nutrient content, at levels commonly found on the Canadian Shield, are both likely to strongly alter Daphnia life-history and populations dynamics. Our results underscore the need to more fully examine how multielemental limitation (e.g., Ca, N, P) affects consumer physiology and life-history given the plausible translation of these effects on the community structure of lake zooplankton.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-09
    Description: Consumer body stoichiometry is a key trait that links organismal physiology to population and ecosystem-level dynamics. However, as elemental composition has traditionally been considered to be constrained within a species, the ecological and evolutionary factors shaping consumer elemental composition have not been clearly resolved. To this end, we examined the causes and extent of variation in the body phosphorus (P) content and the expression of P-linked traits, mass specific growth rate (MSGR) and P use efficiency (PUE), of the keystone aquatic consumer Daphnia using lake surveys and common garden experiments. While daphnid body %P was relatively constrained in field assemblages sampled across an environmental P gradient, unique genotypes isolated from these lakes showed highly variable phenotypic responses when raised across dietary P gradients in the laboratory. Specifically, we observed substantial inter- and intra-specific variation and differences in daphnid responses within and among our study lakes. While variation in Daphnia body %P was mostly due to plastic phenotypic changes, we documented considerable genetic differences in daphnid MSGR and PUE, and relationships between MSGR and body P content were highly variable among genotypes. Overall, our study found that consumer responses to food quality may differ considerably among genotypes and that relationships between organismal life-history traits and body stoichiometry may be strongly influenced by genetic and environmental variation in natural assemblages. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...