GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • 2015-2019  (2)
  • 1
    In: International Journal of Developmental Neuroscience, Wiley, Vol. 56, No. 1 ( 2017-02), p. 42-51
    Abstract: Human birth presents an abrupt transition from intrauterine to extrauterine life. Here we introduce a novel Maturation Index (MI) that considers the relative importance of gestational age at birth and postnatal age at scan in a General Linear Model. The MI is then applied to Diffusion Tensor Imaging (DTI) in newborns for characterizing typical white matter development in neonates. DTI was performed cross‐sectionally in 47 neonates (gestational age at birth = 39.1 ± 1.6 weeks [GA], postnatal age at scan = 25.5 ± 12.2 days [SA] ). Radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA) along 27 white matter fiber tracts were considered. The MI was used to characterize inflection in maturation at the time of birth using GLM estimated rates of change before and after birth. It is proposed that the sign (positive versus negative) of MI reflects the period of greatest maturation rate. Two general patterns emerged from the MI analysis. First, RD and AD (but not FA) had positive MI on average across the whole brain (average MI AD = 0.31 ± 0.42, average MI RD = 0.22 ± 0.34). Second, significant regions of negative MI in RD and FA (but not AD) were observed in the inferior corticospinal regions, areas known to myelinate early. Observations using the proposed method are consistent with proposed models of the white matter maturation process in which pre‐myelination is described by changes in AD and RD due to oligodendrocyte proliferation while true myelination is characterized by changes in RD and FA due to myelin formation.
    Type of Medium: Online Resource
    ISSN: 0736-5748 , 1873-474X
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2012538-0
    detail.hit.zdb_id: 2013748-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Magnetic Resonance in Medicine Vol. 75, No. 4 ( 2016-04), p. 1752-1763
    In: Magnetic Resonance in Medicine, Wiley, Vol. 75, No. 4 ( 2016-04), p. 1752-1763
    Abstract: This article presents a simple method for estimating the effective diffusion coefficients parallel and perpendicular to the axons unconfounded by the intravoxel fiber orientation distribution. We also call these parameters the per‐axon or microscopic diffusion coefficients. Theory and Methods Diffusion MR imaging is used to probe the underlying tissue material. The key observation is that for a fixed b ‐value the spherical mean of the diffusion signal over the gradient directions does not depend on the axon orientation distribution. By exploiting this invariance property, we propose a simple, fast, and robust estimator of the per‐axon diffusion coefficients, which we refer to as the spherical mean technique. Results We demonstrate quantitative maps of the axon‐scale diffusion process, which has factored out the effects due to fiber dispersion and crossing, in human brain white matter. These microscopic diffusion coefficients are estimated in vivo using a widely available off‐the‐shelf pulse sequence featuring multiple b ‐shells and high‐angular gradient resolution. Conclusion The estimation of the per‐axon diffusion coefficients is essential for the accurate recovery of the fiber orientation distribution. In addition, the spherical mean technique enables us to discriminate microscopic tissue features from fiber dispersion, which potentially improves the sensitivity and/or specificity to various neurological conditions. Magn Reson Med, 2015. Magn Reson Med 75:1752–1763, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0740-3194 , 1522-2594
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1493786-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...