GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oikos, Wiley, Vol. 124, No. 9 ( 2015-09), p. 1121-1131
    Abstract: Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investigating how the effects of non‐native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta‐analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non‐native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non‐native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non‐native alga, Caulerpa cylindracea , on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non‐native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non‐native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources. Synthesis Local anthropogenic stressors that severely alter biotic and abiotic conditions may underpin context‐dependency in the impacts of biological invasions. We used a meta‐analysis and an experimental test to examine the relationship between cumulative human impacts and ecological impact of non‐native seaweeds on resident assemblages. Our results suggest that more negative impacts of non‐native seaweeds on the abundance and biomass of resident assemblages can be expected in less degraded or pristine sites. Possibly, stronger impacts prevail at pristine sites, where assemblages are mainly structured by biotic interactions. Hence, management efforts should be mostly directed to prevent the establishment and spread of non‐native seaweeds in pristine areas. On the other hand, weak, but positive effects of seaweeds at the most degraded sites add to the ongoing debate on the role of non‐native species in rehabilitation plans.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 23, No. 8 ( 2017-08), p. 3259-3268
    Abstract: Understanding how historical processes modulate the response of ecosystems to perturbations is becoming increasingly important. In contrast to the growing interest in projecting biodiversity and ecosystem functioning under future climate scenarios, how legacy effects originating from historical conditions drive change in ecosystems remains largely unexplored. Using experiments in combination with stochastic antecedent modelling, we evaluated how extreme warming, sediment deposition and grazing events modulated the ecological memory of rocky intertidal epilithic microphytobenthos ( EMPB ). We found memory effects in the non‐clustered scenario of disturbance (60 days apart), where EMPB biomass fluctuated in time, but not under clustered disturbances (15 days apart), where EMPB biomass was consistently low. A massive grazing event impacted on EMPB biomass in a second run of the experiment, also muting ecological memory. Our results provide empirical support to the theoretical expectation that stochastic fluctuations promote ecological memory, but also show that contingencies may lead to memory loss.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Ecology and Biogeography, Wiley, Vol. 27, No. 7 ( 2018-07), p. 760-786
    Abstract: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km 2 (158 cm 2 ) to 100 km 2 (1,000,000,000,000 cm 2 ). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oikos, Wiley, Vol. 124, No. 4 ( 2015-04), p. 477-485
    Abstract: Understanding how patterns and processes relate across spatial scales is one of the major goals in ecology. 1/ f models have been applied mostly to time series of environmental and ecological variables, but they can also be used to analyse spatial patterns. Since 1/ f noise may display scale‐invariant behaviour, ecological phenomena whose spatial variability shows 1/ f type scaling are susceptible to further characterization using fractals or multifractals. Here we use spectral analysis and multifractal techniques (generalized dimension spectrum) to investigate the spatial distribution of epilithic microphytobenthos (EMPB) on rocky intertidal surfaces. EMPB biomass was estimated from calibrated colour‐infrared images that provided indirect measures of rock surface chlorophyll a concentration, along two 8‐m and one 4‐m long transects sampled in January and November 2012. Results highlighted a pattern of spectral coefficient close to or greater than one for EMPB biomass distribution and multifractal structures, that were consistent among transects, implying scale‐invariance in the spatial distribution of EMPB. These outcomes can be interpreted as a result of the superimposition of several biotic and abiotic processes acting at multiple spatial scales. However, the scale‐invariant nature of EMPB spatial patterns can also be considered a hallmark of self‐organization, underlying the possible role of scale‐dependent feedback in shaping EMPB biomass distribution.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecology, Wiley, Vol. 100, No. 2 ( 2019-02)
    Abstract: Research on regime shifts has focused primarily on how changes in the intensity and duration of press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, hindering our understanding of how historical processes regulate the onset of a regime shift. We performed field manipulations to evaluate whether combinations of extreme events of temperature and sediment deposition that differed in their degree of temporal clustering generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the degree of temporal clustering of events, with biofilm biomass showing both states under a regime of non‐clustered (60 d apart) perturbations while collapsing in the clustered (15 d apart) scenario. Our results indicate that time since the last perturbation can be an important predictor of collapse in systems exhibiting alternative states and that consideration of historical effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics under climate change.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Ecology and Evolution, Wiley, Vol. 6, No. 7 ( 2016-04), p. 2010-2021
    Abstract: Biological invasions threaten biodiversity worldwide. Nonetheless, a unified theory linking disturbance and resistance to invasion through a mechanistic understanding of the changes caused to biodiversity is elusive. Building on different forms of the disturbance‐biodiversity relationship and on the Biotic Resistance Hypothesis (BRH), we constructed conceptual models showing that, according to the main biodiversity mechanism generating invasion resistance (complementary vs. identity effects), disturbance can either promote or hinder invasion. Following the Intermediate Disturbance Hypothesis (IDH), moderate levels of disturbance (either frequency or intensity) are expected to enhance species richness. This will promote invasion resistance when complementarity is more important than species identity. Negative effects of severe disturbance on invasion resistance, due to reductions in species richness, can be either overcompensated or exacerbated by species identity effects, depending on the life‐traits becoming dominant within the native species pool. Different invasion resistance scenarios are generated when the diversity‐disturbance relationship is negative or positive monotonic. Predictions from these models were experimentally tested on rocky reefs. Macroalgal canopies differing in species richness (1 vs. 2 vs. 3) and identity, were exposed to either a moderate or a severe pulse disturbance. The effects of different canopy‐forming species on the seaweed, Caulerpa cylindracea , varied from positive ( Cystoseira crinita ) to neutral ( Cystoseira barbata ) to negative ( Cystoseira compressa ). After 2 years, severely disturbed plots were monopolized by C. compressa and supported less C .  cylindracea . Our study shows that the effects of disturbance on invasion depend upon its intensity, the main mechanism through which biodiversity generates invasion resistance and the life‐traits selected within the native species pool. Disturbance can sustain invasion resistance when promoting the dominance of competitively subordinate species possessing traits that allow outperforming invaders.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology, Wiley, Vol. 99, No. 12 ( 2018-12), p. 2654-2666
    Abstract: Understanding how increasing human domination of the biosphere affects life on earth is a critical research challenge. This task is facilitated by the increasing availability of open‐source data repositories, which allow ecologists to address scientific questions at unprecedented spatial and temporal scales. Large datasets are mostly observational, so they may have limited ability to uncover causal relations among variables. Experiments are better suited at attributing causation, but they are often limited in scope. We propose hybrid datasets, resulting from the integration of observational with experimental data, as an approach to leverage the scope and ability to attribute causality in ecological studies. We show how the analysis of hybrid datasets with emerging techniques in time series analysis (Convergent Cross‐mapping) and macroecology (Joint Species Distribution Models) can generate novel insights into causal effects of abiotic and biotic processes that would be difficult to achieve otherwise. We illustrate these principles with two case studies in marine ecosystems and discuss the potential to generalize across environments, species and ecological processes. If used wisely, the analysis of hybrid datasets may become the standard approach for research goals that seek causal explanations for large‐scale ecological phenomena.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Diversity and Distributions, Wiley, Vol. 25, No. 7 ( 2019-07), p. 1101-1117
    Abstract: Marine bioconstructions such as coralligenous formations are hotspot of biodiversity and play a relevant ecological role in the preservation of biodiversity by providing carbon regulation, protection and nursery areas for several marine species. For this reason, the European Union Habitat Directive included them among priority habitats to be preserved. Although their ecological role is well established, connectivity patterns are still poorly investigated, representing a limit in conservation planning. The present study pioneers a novel approach for the analysis of connectivity in marine bioconstructor species, which often lack suitable genetic markers, by taking advantage of next‐generation sequencing techniques. We assess the geographical patterns of genomic variation of the sunset cup coral Leptopsammia pruvoti Lacaze‐Duthiers, 1897, an ahermatypic, non‐zooxanthellate and solitary scleractinian coral species common in coralligenous habitats and distributed across the Mediterranean Sea. Location The Italian coastline (Western and Central Mediterranean). Methods We applied the restriction site‐associated 2b‐RAD approach to genotype over 1,000 high‐quality and filtered single nucleotide polymorphisms in 10 population samples. Results The results revealed the existence of a strongly supported genetic structure, with highly significant pairwise F ST values between all the population samples, including those collected about 5 km apart from each other. Moreover, genomic data indicate that the strongest barriers to gene flow are between the western (Ligurian–Tyrrhenian Sea) and the eastern side (Adriatic Sea) of the Italian peninsula. Main conclusions The strong differentiation found in L. pruvoti is similar to that found in other species of marine bioconstructors investigated in this area, but it strongly contrasts with the small differences found in many fish and invertebrates at the same geographical scale. All in one, our results highlight the importance of assessing connectivity in species belonging to coralligenous habitats as, due to their limited dispersal ability, they might require specific spatial conservation measures.
    Type of Medium: Online Resource
    ISSN: 1366-9516 , 1472-4642
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020139-4
    detail.hit.zdb_id: 1443181-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Global Change Biology, Wiley, Vol. 24, No. 6 ( 2018-06), p. 2416-2433
    Abstract: Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables ( EOV s) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver‐pressure‐state‐impact‐response ( DPSIR ) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOV s were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOV s to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOV s, the properties being monitored and the length of the existing time‐series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...