GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-18
    Description: There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-19
    Description: Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α 2 -adrenergic receptors (α 2 -ARs) by GGA3 (Golgi-localized, -adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans -Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α 2B -AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α 2B -AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α 2B -AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α 2A -AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-28
    Description: Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-21
    Description: Minocycline-based combination therapy has been suggested to be a possible choice for the treatment of infections caused by minocycline-susceptible Acinetobacter baumannii , but its use for the treatment of infections caused by minocycline-resistant A. baumannii is not well established. In this study, we compared the efficacy of minocycline-based combination therapy (with colistin, cefoperazone-sulbactam, or meropenem) to that of colistin in combination with meropenem for the treatment of minocycline-resistant A. baumannii infection. From 2006 to 2010, 191 (17.6%) of 1,083 A. baumannii complex isolates not susceptible to minocycline from the Taiwan Surveillance of Antimicrobial Resistance program were collected. Four representative A. baumannii isolates resistant to minocycline, amikacin, ampicillin-sulbactam, ceftazidime, ciprofloxacin, cefepime, gentamicin, imipenem, levofloxacin, meropenem, and piperacillin-tazobactam were selected on the basis of the diversity of their pulsotypes, collection years, health care setting origins, and geographic areas of origination. All four isolates had tetB and overexpressed adeABC , as revealed by quantitative reverse transcription-PCR. Among all minocycline-based regimens, only the combination with colistin produced a fractional inhibitory concentration index comparable to that achieved with meropenem combined with colistin. Minocycline (4 or 16 μg/ml) in combination with colistin (0.5 μg/ml) also synergistically killed minocycline-resistant isolates in time-kill studies. Minocycline (50 mg/kg of body weight) in combination with colistin (10 mg/kg) significantly improved the survival of mice and reduced the number of bacteria present in the lungs of mice compared to the results of monotherapy. However, minocycline (16 μg/ml)-based therapy was not effective at reducing biofilm-associated bacteria at 24 or 48 h when its effectiveness was compared to that of colistin (0.5 μg/ml) and meropenem (8 μg/ml). The clinical use of minocycline in combination with colistin for the treatment of minocycline-resistant A. baumannii may warrant further investigation.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-25
    Description: Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus , Enterococcus , and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (〉95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-28
    Description: The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae , we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, IS Ecp1 , whereas the bla KPC-2 gene was in the context of a Tn 4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn 4401a-bla KPC-2 -prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)- cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR- cas in K. pneumoniae strains and suggested that the evolving CRISPR- cas , with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae . Additionally, the implications from this study also raise concerns for the application of a CRISPR- cas strategy against antimicrobial resistance.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-03
    Description: Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to perform Raman measurement is that, unlike label-based fluorescence techniques, it provides a "fingerprint" that is specific to the identity and state of any (unlabeled) sample. Thus, it has emerged as a powerful method for studying living cells under physiological and environmental conditions. However, the laser's high power also has the potential to kill bacteria, which leads to concerns. The research presented here is a quantitative evaluation that provides a generic platform and methodology to evaluate the effects of laser irradiation on individual bacterial cells. Furthermore, it illustrates this by determining the conditions required to nondestructively measure the spectra of representative bacteria from several different groups.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-24
    Description: The rate of recovery of carbapenem-resistant Acinetobacter baumannii (CRAB) isolates has increased significantly in recent decades in Taiwan. This study investigated the molecular epidemiology of CRAB with a focus on the mechanisms of resistance and spread in isolates with bla OXA-23-like or bla OXA-24-like . All 555 CRAB isolates in our multicenter collection, which were recovered from 2002 to 2010, were tested for the presence of class A, B, and D carbapenemase genes. All isolates with bla OXA-23-like or bla OXA-24-like were subjected to pulsed-field gel electrophoresis, and 82 isolates (60 isolates with bla OXA-23-like and 22 isolates with bla OXA-24-like ) were selected for multilocus sequence typing to determine the sequence type (ST) and clonal group (CG) and for detection of additional β-lactamase and aminoglycoside resistance genes. The flanking regions of carbapenem and aminoglycoside resistance genes were identified by PCR mapping and sequencing. The localization of bla OXA was determined by S1 nuclease and I-CeuI assays. The numbers of CRAB isolates carrying bla OXA-23-like or bla OXA-24-like , especially those carrying bla OXA-23-like , increased significantly from 2008 onward. The bla OXA-23-like gene was carried by antibiotic resistance genomic island 1 (AbGRI1)-type structures located on plasmids and/or the chromosome in isolates of different STs (CG92 and novel CG786), whereas bla OXA-24-like was carried on plasmids in CRAB isolates of limited STs (CG92). No class A or B carbapenemase genes were identified. Multiple aminoglycoside resistance genes coexisted in CRAB. Tn 6180 -borne armA was found in 74 (90.2%) CRAB isolates, and 58 (70.7%) isolates had Tn 6179 upstream, constituting AbGRI3. bla TEM was present in 38 (46.3%) of the CRAB isolates tested, with 35 (92.1%) isolates containing bla TEM in AbGRI2-type structures, and 61% of ampC genes had IS Aba1 upstream. We conclude that the dissemination and spread of a few dominant lineages of CRAB containing various resistance island structures occurred in Taiwan.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-25
    Description: Dolutegravir (DTG) is the latest antiretroviral (ARV) approved for the treatment of human immunodeficiency virus (HIV) infection. The G118R substitution, previously identified with MK-2048 and raltegravir, may represent the initial substitution in a dolutegravir resistance pathway. We have found that subtype C integrase proteins have a low enzymatic cost associated with the G118R substitution, mostly at the strand transfer step of integration, compared to either subtype B or recombinant CRF02_AG proteins. Subtype B and circulating recombinant form AG (CRF02_AG) clonal viruses encoding G118R-bearing integrases were severely restricted in their viral replication capacity, and G118R/E138K-bearing viruses had various levels of resistance to dolutegravir, raltegravir, and elvitegravir. In cell-free experiments, the impacts of the H51Y and E138K substitutions on resistance and enzyme efficiency, when present with G118R, were highly dependent on viral subtype. Sequence alignment and homology modeling showed that the subtype-specific effects of these mutations were likely due to differential amino acid residue networks in the different integrase proteins, caused by polymorphic residues, which significantly affect native protein activity, structure, or function and are important for drug-mediated inhibition of enzyme activity. This preemptive study will aid in the interpretation of resistance patterns in dolutegravir-treated patients. IMPORTANCE Recognized drug resistance mutations have never been reported for naive patients treated with dolutegravir. Additionally, in integrase inhibitor-experienced patients, only R263K and other previously known integrase resistance substitutions have been reported. Here we suggest that alternate resistance pathways may develop in non-B HIV-1 subtypes and explain how "minor" polymorphisms and substitutions in HIV integrase that are associated with these subtypes can influence resistance against dolutegravir. This work also highlights the importance of phenotyping versus genotyping when a strong inhibitor such as dolutegravir is being used. By characterizing the G118R substitution, this work also preemptively defines parameters for a potentially important pathway in some non-B HIV subtype viruses treated with dolutegravir and will aid in the inhibition of such a virus, if detected. The general inability of strand transfer-related substitutions to diminish 3' processing indicates the importance of the 3' processing step and highlights a therapeutic angle that needs to be better exploited.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-20
    Description: TANK-binding kinase 1 (TBK1)-mediated induction of type I interferon (IFN) plays a critical role in host antiviral responses and immune homeostasis. The negative regulation of TBK1 activity is largely unknown. We report that suppressor of cytokine signaling 3 (SOCS3) inhibits the IFN-β signaling pathway by promoting proteasomal degradation of TBK1. Overexpression and knockdown experiments indicated that SOCS3 is a negative regulator of IFN regulatory factor 3 (IRF3) phosphorylation and IFN-β transcription. Moreover, SOCS3 directly associates with TBK1, and they colocalize in the cytoplasm. SOCS3 catalyzes K48-linked polyubiquitination of TBK1 at Lys341 and Lys344 and promotes subsequent TBK1 degradation. On the contrary, SOCS3 knockdown markedly increases the abundance of TBK1. Interestingly, both the BOX domain of SOCS3 and Ser172 phosphorylation of TBK1 are indispensable for the processes of ubiquitination and degradation. Ectopic expression of SOCS3 significantly inhibits vesicular stomatitis virus (VSV) and influenza A virus strain A/WSN/33 (WSN)-induced IRF3 phosphorylation and facilitates the replication of WSN virus by detecting the transcription of its viral RNA (vRNA). Knockdown of SOCS3 represses WSN replication. Collectively, these results demonstrate that SOCS3 acts as a negative regulator of IFN-β signal by ubiquitinating and degrading TBK1, shed light on the understanding of antiviral innate immunity, and provide a potential target for developing antiviral agents.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...