GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-02
    Description: Microdialysis is a powerful technique allowing for real-time measurement of unbound drug concentrations in brain interstitial fluid in conscious animals. Use of microdialysis in drug discovery is limited by high resource requirement and low throughput, but this may be improved by cassette dosing. Administering multiple compounds intravenously of diverse physiochemical properties, it is often very challenging and time consuming to identify a vehicle that can dissolve all of the compounds. To overcome this limitation, the present study explores the possibility of administering a cassette dose of nine diverse compounds (carbamazepine, citalopram, desmethylclozapine, diphenhydramine, gabapentin, metoclopramide, naltrexone, quinidine, and risperidone) in suspension, rather than in solution, by intraperitoneal and subcutaneous routes, and determining if this is a viable option for assessing blood-brain barrier penetration in microdialysis studies. Repeated hourly subcutaneous dosing during the 6-hour microdialysis study allowed for the best attainment of distributional equilibrium between brain and plasma, resulting in less than a 2-fold difference in the unbound brain to unbound plasma concentration ratio for the cassette dosing method versus discrete dosing. Both subcutaneous and intraperitoneal repeated dosing can provide a more practical substitute for intravenous dosing in determining brain penetration of a cassette of diverse compounds in brain microdialysis studies. The results from the present study demonstrate that dosing compounds in suspension represents a practical approach to eliminating the technical challenge and labor-intensive step of preparation of solutions of a mixture of compounds and will enable the use of the cassette brain microdialysis method in a central nervous system drug discovery setting.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-19
    Description: Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-02
    Description: Our previous study showed that invariant natural killer T (iNKT) cells might act as an adjuvant to promote Th2 inflammatory responses in an OVA-induced mouse model of allergic asthma, but the mechanism remains unknown. To clarify the underlying mechanism through which iNKT cells promote Th2 inflammatory responses, we investigated the modulatory influence of iNKT cells on phenotypic and functional maturation of lung dendritic cells (LDCs) using iNKT cell-knockout mice, specific iNKT cell activation, coculture experiments, and adoptive transfer of iNKT cells in mouse models of asthma. Our data showed that iNKT cell deficiency could downregulate surface maturation markers and proinflammatory cytokine secretion of LDCs from a mouse model of asthma. However, elevated activation of iNKT cells by α-galactosylceramide and adoptive transfer of iNKT cells could upregulate surface maturation markers and proinflammatory cytokine secretion of LDCs from mouse models of asthma. Meanwhile, iNKT cells significantly influenced the function of LDCs, markedly enhancing Th2 responses in vivo and in vitro. In addition, iNKT cell can induce LDCs expression of CD206 and RELM-α, reflecting alternative activation of LDCs in a mouse model of asthma. α-Galactosylceramide treatment significantly enhanced expression of CD40L of lung iNKT cells from a mouse model of asthma, and the coculture experiment of LDCs with iNKT cells showed that the blockade of CD40L strongly suppressed surface maturation markers and proinflammatory cytokine production by LDCs. Our data suggest that iNKT cells can promote immunogenic maturation of LDCs to enhance Th2 responses in mouse models of asthma.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-02
    Description: Autophagy plays an important role in liver triglyceride (TG) metabolism. Inhibition of autophagy could reduce the clearance of TG in the liver. Hydrogen sulfide (H 2 S) is a potent stimulator of autophagic flux. Recent studies showed H 2 S is protective against hypertriglyceridemia (HTG) and noalcoholic fatty liver disease (NAFLD), while the mechanism remains to be explored. Here, we tested the hypothesis that H 2 S reduces serum TG level and ameliorates NAFLD by stimulating liver autophagic flux by the AMPK-mTOR pathway. The level of serum H 2 S in patients with HTG was lower than that of control subjects. Sodium hydrosulfide (NaHS, H 2 S donor) markedly reduced serum TG levels of male C57BL/6 mice fed a high-fat diet (HFD), which was abolished by coadministration of chloroquine (CQ), an inhibitor of autophagic flux. In HFD mice, administration of NaSH increased the LC3BII-to-LC3BI ratio and decreased the p62 protein level. Meanwhile, NaSH increased the phosphorylation of AMPK and thus reduced the phosphorylation of mTOR in a Western blot study. In cultured LO2 cells, high-fat treatment reduced the ratio of LC3BII to LC3BI and the phosphorylation of AMPK, which were reversed by the coadministration of NaSH. Knockdown of AMPK by siRNA in LO2 cells blocked the autophagic enhancing effects of NaSH. The same qualitative effect was observed in AMPKα2 –/– mice. These results for the first time demonstrated that H 2 S could reduce serum TG level and ameliorate NAFLD by activating liver autophagy via the AMPK-mTOR pathway.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-26
    Description: CYP2A13 is a human cytochrome P450 (P450) enzyme important in the bioactivation of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). CYP2A13 expression levels vary dramatically among lung biopsy samples from patients, presumably owing in part to a suppression of CYP2A13 expression by disease-associated inflammation. Here, we determined whether CYP2A13 expression in the lungs of CYP2A13-humanized mice is suppressed by the presence of lung tumors. Tissues from an NNK lung tumor bioassay were examined. CYP2A13-humanized mice (95–100%) had multiple lung tumors at 16 weeks after NNK (30 or 50 mg/kg) treatment; whereas only ~9% of saline-treated CYP2A13-humanized mice had lung tumor (~1/lung). Mice with lung tumors, from the NNK-treated groups, were used for dissecting adjacent tumor-free lung tissues; whereas mice without visible lung tumors, from the saline-treated group, were used as controls. Compared with the controls, the levels of CYP2A13 protein and mRNA were both reduced significantly (by ≥50%) in the NNK-treated groups. The levels of mouse CYP2B10 and CYP2F2 mRNAs were also significantly lower in the dissected normal lung tissues from tumor-bearing mice than in lungs from the control mice. Pulmonary tissue levels of three proinflammatory cytokines, tumor necrosis factor alpha, interferon gamma, and interleukin-6, were significantly higher in the tumor-bearing mice than in the controls, indicating occurrence of low-grade lung inflammation at the time of necropsy. Taken together, these findings support the hypothesis that CYP2A13 levels in human lungs can be suppressed by disease-associated inflammation in tissue donors, a scenario causing underestimation of CYP2A13 levels in healthy lungs.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-05
    Description: This study was designed to increase the throughput of rat brain microdialysis studies by administration of compounds as a cassette as opposed to discrete study. Eight compounds (carbamazepine, citalopram, desmethylclozapine, diphenhydramine, gabapentin, metoclopramide, naltrexone, and stavudine) were selected and administered as an intravenous bolus dose at 0.5–3.3 mg/kg each followed by an intravenous infusion at 1 mg/kg per hour for 6 hours in rats in a cassette or discrete dosing. The dialysate, plasma, brain, and cerebrospinal fluid were collected and analyzed using liquid chromatography–tandem mass spectrometry. The microdialysis probe recovery was determined by an in vitro gain method. The recovery between the cassette and discrete dosing was similar, with an average of 1.0 ± 0.10–fold difference. The stavudine interstitial fluid (ISF) concentration, as measured by brain microdialysis, was below the low limit of quantitation and was excluded from the analyses. The ratios of ISF concentration to unbound plasma concentration were within 2-fold for six of the remaining seven compounds, with an average of 0.92 ± 0.51–fold difference between the cassette and discrete methods. The ratios of ISF concentration to unbound brain concentration, as measured by the brain homogenate method, were also similar, with a 1.1 ± 0.7–fold difference. In addition, the ratios of ISF to cerebrospinal fluid concentrations were similar, with a 1.5 ± 0.6–fold difference. The results from this study support the use of a cassette dosing approach to enhance the throughput of rat brain microdialysis studies in drug discovery.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-22
    Description: Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity 3 H-cimetidine ( 3 HCIM) binding sites in the brain. 3 HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c , 9 Cyp2d , and 7 Cyp3a genes were studied for deficiencies in 3 HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal 3 HCIM binding values, indicating that gene products of Cyp2d , Cyp3a , and Cyp2c are not 3 HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-10
    Description: Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl 4 ) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...