GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • S. Karger AG  (88)
  • 2015-2019  (88)
Material
Publisher
  • S. Karger AG  (88)
Language
Years
  • 2015-2019  (88)
Year
FID
Subjects(RVK)
  • 1
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 35, No. 1 ( 2015), p. 292-304
    Abstract: Aim: The aim of this study was to explore whether the circulating frequency and function of myeloid-derived suppressor cells (MDSCs) are altered in patients with acute coronary syndrome (ACS). Methods: The frequency of MDSCs in peripheral blood was determined by flow cytometry, and mRNA expression in purified MDSCs was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). The suppressive function of MDSCs isolated from different groups was also determined. The plasma levels of certain cytokines were determined using Bio-Plex Pro™ Human Cytokine Assays. Results: The frequency of circulating CD14+HLA-DR-/low MDSCs; arginase-1 (Arg-1) expression; and plasma levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-33 were markedly increased in ACS patients compared to stable angina (SA) or control patients. Furthermore, MDSCs from ACS patients were more potent suppressors of T-cell proliferation and IFN-γ production than those from the SA or control groups at ratios of 1:4 and 1:2; this effect was partially mediated by Arg-1. In addition, the frequency of MDSCs was positively correlated with plasma levels of IL-6, IL-33, and TNF-α. Conclusions: We observed an increased frequency and suppressive function of MDSCs in ACS patients, a result that may provide insights into the mechanisms involved in ACS.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    S. Karger AG ; 2018
    In:  Cellular Physiology and Biochemistry Vol. 48, No. 2 ( 2018), p. 705-717
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 48, No. 2 ( 2018), p. 705-717
    Abstract: Diabetic retinopathy (DR) is a common and devastating microvascular complication of diabetes and a major cause of acquired blindness in young adults. Advanced glycation end products (AGEs) accumulated under hyperglycemic conditions are thought to play an important role in the pathogenesis of DR. AGEs can exert their deleterious effects by acting directly to induce aberrant crosslinking of extracellular matrix proteins, to increase vascular stiffness, altering vascular structure and function. Moreover, AGEs binding to the receptor for AGEs (RAGE) evokes intensive intracellular signaling cascades that leading to endothelial dysfunction, elaboration of key proinflammatory cytokines and proangiogenic factors, mediating pericyte apoptosis, vascular inflammation and angiogenesis, as well as breakdown of the inner blood-retinal barrier (BRB), the end result of all these events is damage to the neural and vascular components of the retina. Elucidation of AGE-induced mechanisms will help in the understanding of the complex cellular and molecular pathogenesis associated with DR. Novel anti-AGEs agents or AGE crosslink “breakers” are being investigated, it is hoped that in next few years, some of these promising therapies will be successfully applied in clinical context, aiming to reduce the major economical and medical burden caused by DR.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 38, No. 6 ( 2016), p. 2438-2451
    Abstract: Background/Aims: Myeloid-derived suppressor cells (MDSCs) are increased in inflammatory and autoimmune disorders. This study aims to evaluate the significance of MDSCs in dilated cardiomyopathy (DCM) patients. Methods: In total, 42 newly hospitalized DCM patients and 39 healthy controls were enrolled in the study. The frequencies of circulating CD14+HLA-DR-/low MDSCs were determined by flow cytometry. Then, the functional properties of MDSCs in suppressing T cell proliferation and interferon-gamma (IFN-γ) production were measured in a co-culture model. Then, mRNA expression levels of various important molecules in peripheral blood mononuclear cells were measured by real time polymerase chain reaction. Furthermore, correlation analyses between MDSC frequencies and cardiac function parameters were also performed. Results: The frequencies of circulating CD14+HLA-DR-/low MDSCs were significantly elevated in DCM patients compared with healthy controls. It showed that MDSCs from DCM patients more effectively suppressed T cell proliferation and IFN-γ production compared with those from healthy controls, which was partially mediated by arginase-1 (Arg-1). In addition, the correlation analysis suggested that MDSC frequencies were negatively correlated with left ventricular ejection fraction (LVEF), while positively with N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with DCM. Conclusions: Circulating activated MDSCs might play significant immunomodulatory roles in the pathogenesis of DCM.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 43, No. 3 ( 2017), p. 1113-1125
    Abstract: Background/Aims: Microglial activation is an important pathological feature in the brains of patients with Alzheimer’s disease (AD), and amyloid-β (Aβ) peptides play a crucial role in microglial activation. In addition, edaravone (EDA) was recently shown to suppress oxidative stress and proinflammatory cytokine production in APPswePS1dE9 (APP/PS1) mice. However, the mechanism by which EDA inhibits the Aβ-induced proinflammatory response in microglia is poorly understood. Methods: The mitochondrial membrane potential (∆ψm) was evaluated using JC-1 staining. Intracellular reactive oxygen species (ROS) and mitochondrial ROS levels were detected using CM-H2DCFDA and MitoSOXTM Red, respectively. The levels of CD11b, NLRP3, pro-caspase-1 and manganese superoxide dismutase (SOD-2) were observed by western blotting, and the levels of interleukin-1beta (IL-1β) in culture supernatants were quantified using an ELISA kit. Results: Aβ induced microglia activation and mitochondrial dysfunction. In addition, mitochondrial dysfunction was associated with ROS accumulation and activation of the NLRP3 inflammasome. Importantly, Aβ induced activation of the NLRP3 inflammasome, leading to caspase-1 activation and IL-1β release in microglia. Moreover, EDA obviously attenuated the depolarization of ∆ψm, reduced mitochondria-derived ROS production and increased SOD-2 activity, resulting in the suppression of NLRP3 inflammasome-mediated IL-1β secretion in Aβ-treated microglia. Conclusion: EDA is a mitochondria-targeted antioxidant and exhibits anti-inflammatory effects on Aβ-treated microglia.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2017
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 49, No. 4 ( 2018), p. 1615-1632
    Abstract: Background/Aims: We previously showed that the major bioactive compound of Atractylodes macrocephula Koidz atractylenolide 1 (ATL-1) inhibited human lung cancer cell growth by suppressing the gene expression of 3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1). However, the potentially associated molecules and downstream effectors of PDK1 underlying this inhibition, particularly the mechanism for enhancing the anti-tumor effects of epidermal growth factor receptor-tyrosine-kinase inhibitors (EGFR-TKIs), remain unknown. Methods: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Western blot analyses were performed to examine the protein expressions of PDK1 and of zeste homolog 2 (EZH2). The levels of long non-coding RNA (lncRNA) and HOX transcript antisense RNA (HOTAIR) were examined via qRT-PCR. RNA-binding protein immunoprecipitation assays were used to analyze HOTAIR interaction with EZH2. The promoter activity of the EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. Exogenous expressions of PDK1, HOTAIR, and EZH2 were conducted via transient transfection assays. A xenografted tumor model was used to further evaluate the effect of ATL-1 in the presence or absence of erlotinib in vivo. Results: We showed that the combination of ATL-1 and EGFR-TKI erlotinib further inhibited growth and induced cell arrest of the human lung cancer cells, determined by both MTT and flow cytometry assays. ATL-1 inhibited the protein expression and the promoter activity of EZH2, which was reversed in cells with PDK1 overexpression. Interestingly, ATL-1 inhibited the expression levels of HOTAIR. While silencing HOTAIR inhibited the expressions of PDK1 and EZH2, overexpression of HOTAIR reduced the ATL-1-reduced PDK1 and EZH2 protein expressions and EZH2 promoter activity. In addition, ATL-1 reduced the HOTAIR binding to the EZH2 protein. Moreover, we found that exogenously expressed EZH2 antagonized the effect of ATL-1 on cell growth inhibition. Consistent with the in vitro results, ATL-1 inhibited tumor growth and the expression levels of HOTAIR, protein expressions of EZH2 and PDK1 in vivo. Importantly, there was synergy of the combination of ATL-1 and erlotinib in this process. Conclusion: Here, we provide the first evidence that ATL-1 inhibits lung cancer cell growth through inhibiting not only the PDK1 but also the lncRNA HOTAIR, which results in the reduction of one downstream effector EZH2 expression. The novel interplay between the HOTAIR and EZH2, as well as repressions of the PDK1 and HOTAIR coordinate the overall effects of ATL-1. Importantly, the combination of ATL-1 and EGFR-TKI erlotinib exhibits synergy. Thus, targeting the PDK1- and HOTAIR-mediated downstream molecule EZH2 by the combination of ATL-1 and erlotinib potentially facilitates the development of an additional novel strategy to combat lung cancer.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 37, No. 2 ( 2015), p. 719-734
    Abstract: Background/Aims: Diabetic patients suffer from severe neointimal hyperplasia following angioplasty. The epigenetic abnormalities are increasingly considered to be relevant to the pathogenesis of diabetic cardiovascular complications. But the epigenetic mechanisms linking diabetes and coronary restenosis have not been fully elucidated. In this study, we explored the protective effect and underlying mechanisms of demethylases JMJD2A inhibition in balloon-injury induced neointimal formation in diabetic rats. Methods: JMJD2A inhibition was achieved by the chemical inhibitor 2,4-pyridinedicarboxylic acid (2,4-PDCA) and small interfering RNA (siRNA). In vitro, we investigated the proliferation, migration and inflammation of rat vascular smooth muscle cells (VSMCs) in response to high glucose (HG). In vivo, diabetic rats induced using high-fat diet and low-dose streptozotocin (35mg/kg) underwent carotid artery balloon injury. Morphometric analysis was performed using hematein eosin and immumohistochemical staining. Chromatin Immunoprecipitation (ChIP) was conducted to detect modification of H3K9me3 at inflammatory genes promoters. Results: The global JMJD2A was increased in HG-stimulated VSMCs and balloon-injured arteries of diabetic rats, accompanied by decreased H3K9me3. The inhibition of JMJD2A suppressed VSMCs proliferation, migration and inflammation induced by high glucose (HG) in vitro. And JMJDA2A inhibition attenuated neointimal formation in balloon-injured diabetic rats. The underlying mechanisms were relevant to the restoration of H3K9me3 levels at the promoters of MCP-1 and IL-6, and then the suppressed expression of MCP-1 and IL-6. Conclusion: The JMJD2A inhibition significantly attenuated neointimal formation in balloon injured diabetic rats via the suppression of VSMCs proliferation, migration, and inflammation by restoring H3K9me3.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Neuroepidemiology, S. Karger AG, Vol. 47, No. 2 ( 2016), p. 103-108
    Abstract: 〈 b 〉 〈 i 〉 Background and Aim: 〈 /i 〉 〈 /b 〉 Several epidemiological studies have reported the association between obesity and multiple sclerosis (MS). 〈 b 〉 〈 i 〉 Methods: 〈 /i 〉 〈 /b 〉 A literature search of the observational studies, published as original articles in English before December 2015, was performed using electronic databases. 〈 b 〉 〈 i 〉 Results: 〈 /i 〉 〈 /b 〉 Five observational studies were included, of which 3 were case-control studies and 2 were cohort studies. The pooled relative risk (RR) for overweight and obesity during childhood and adolescence compared with normal weight (body mass index = 18.5-24.9 kg/m 〈 sup 〉 2 〈 /sup 〉 ) was 1.44 (95% CI 1.22-1.70) and 2.01 (95% CI 1.63-2.48), respectively. In subgroup analyses, we found that excess body weight during childhood and adolescence increased the risk of MS in the female group (overweight: pooled RR = 1.62, 95% CI 1.35-1.94; obesity: pooled RR = 2.25, 95% CI 1.77-2.85), but not in the male group (overweight: pooled RR = 1.19, 95% CI 0.91-1.55; obesity: pooled RR = 1.22, 95% CI 0.79-1.90). 〈 b 〉 〈 i 〉 Conclusions: 〈 /i 〉 〈 /b 〉 Excess body weight during childhood and adolescence was associated with an increased risk of MS; severe obesity demonstrated a stronger risk. A statistically significant association was found in the female group, but not in the male group.
    Type of Medium: Online Resource
    ISSN: 0251-5350 , 1423-0208
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1483032-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 46, No. 1 ( 2018), p. 9-22
    Abstract: Background/Aims: Increased endoplasmic reticulum (ER) stress contributes to development of cardiorenal syndrome (CRS), and Silent Information Regulator 1 (SIRT1), a class III histone deacetylase, may have protective effects on heart and renal disease, by reducing ER stress. We aimed to determine if SIRT1 alleviates CRS through ER stress reduction. Methods: Wild type mice (n=37), mice with cardiac-specific SIRT1 knockout (n=29), or overexpression (n=29), and corresponding controls, were randomized into four groups: sham MI (myocardial infarction) +sham STNx (subtotal nephrectomy); MI+sham STNx; sham MI+STNx; and MI+STNx. To establish the CRS model, subtotal nephrectomy (5/6 nephrectomy, SNTx) and myocardial infarction (MI) (induced by ligation of the left anterior descending (LAD) coronary artery) were performed successively to establish CRS model. At week 8, the mice were sacrificed after sequential echocardiographic and hemodynamic studies, and then pathology and Western-blot analysis were performed. Results: Neither MI nor STNx alone significantly influenced the other healthy organ. However, in MI groups, STNx led to more severe cardiac structural and functional deterioration, with increased remodeling, increased BNP levels, and decreased EF, Max +dp/dt, and Max -dp/dt values than in sham MI +STNx groups. Conversely, in STNx groups, MI led to renal structural and functional deterioration, with more severe morphologic changes, augmented desmin and decreased nephrin expression, and increased BUN, SCr and UCAR levels. In MI+STNx groups, SIRT1 knockout led to more severe cardiac structural and functional deterioration, with higher Masson-staining score and BNP levels, and lower EF, FS, Max +dp/dt, and Max -dp/dt values; while SIRT1 overexpression had the opposite attenuating effects. In kidney, SIRT1 knockout resulted in greater structural and functional deterioration, as evidenced by more severe morphologic changes, higher levels of UACR, BUN and SCr, and increased desmin and TGF-β expression, while SIRT1 overexpression resulted in less severe morphologic changes and increased nephrin expression without significant influence on BUN or SCr levels. The SIRT1 knockout but not overexpression resulted in increased myocardial expression of CHOP and GRP78. Cardiac-specific SIRT1 knockout or overexpression resulted in increased or decreased renal expression of CHOP, Bax, and p53 respectively. Conclusions: Myocardial SIRT1 activation appears protective to both heart and kidney in CRS models, probably through modulation of ER stress.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 45, No. 4 ( 2018), p. 1700-1706
    Abstract: Background/Aims: Massive proteinuria, a significant sign of nephrotic syndrome (NS), has the potential to injure tubular epithelial cells (TECs). Furosemide is widely used for the treatment of edema, a common manifestation of NS. However, whether furosemide treatment affects massive proteinuria-induced TEC injury in patients with NS is unknown. Methods: The effect of furosemide on TEC damage was investigated in vitro. In addition, a clinical study was conducted to study whether the short-term treatment of nephrotic edema with furosemide could exacerbate TEC injury. Results: The proliferation of in vitro human kidney-2 (HK-2) cells exposed to massive urinary protein (8 mg/mL) significantly decreased (P 〈 0.05), while the levels of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase associated lipocalin (NGAL) in the supernatants significantly increased (P 〈 0.05). Importantly, furosemide treatment did not further increase the expression of Kim-1 and NGAL in HK-2 cells upregulated by massive proteinuria. For the clinical study, 26 patients with NS, all prescribed the recommended dosage of prednisone (1 mg/kg/day), were randomly assigned to two groups. One group (n=13) received furosemide (60-120 mg/day, intravenously) for 1 week; the remaining participants (control group) did not receive furosemide or any other diuretics. The results showed that the 24-h urine volume in the furosemide-treated group was slightly, but not significantly, higher than that in the control group (P 〉 0.05). In addition, serum levels of BUN, Scr, Cys C, and urinary Kim-1 and NGAL were not significantly different between the two groups (all P 〉 0.05). Twenty-three patients underwent a renal biopsy. Of these, 22 patients exhibited vacuolar degeneration of the TECs; 8 patients showed brush border membrane shedding of the TECs; and 12 patients showed protein casts. However, there were no significant differences between the two groups (all P 〉 0.05). Conclusion: In summary, massive proteinuria induced the injury of TECs in patients with NS, and furosemide treatment did not aggravate this injury.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 42, No. 5 ( 2017), p. 1870-1887
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2017
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...