GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (5)
  • 2015-2019  (5)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 24 ( 2016-06-14), p. 6605-6610
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 24 ( 2016-06-14), p. 6605-6610
    Abstract: Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 45 ( 2019-11-05), p. 22552-22555
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 45 ( 2019-11-05), p. 22552-22555
    Abstract: Vitamin D and sunlight have each been reported to protect against the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). To date, the contribution of each has been unclear as ultra violet (UV) exposure also causes the generation of vitamin D in the skin. To examine whether the UV based suppression of EAE results, at least, in part from the production of vitamin D, we studied the effect of UV light on EAE in mice unable to produce 7-dehydroxycholesterol (7-DHC), the required precursor of vitamin D. Furthermore, we examined UV suppression of EAE in mice devoid of the vitamin D receptor (VDR). Our results demonstrate that UV light suppression of EAE occurs in the absence of vitamin D production and in the absence of VDR. Future investigations will focus on identifying the pathway responsible for the protective action of UV in EAE and presumably human MS.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 32 ( 2017-08-08), p. 8528-8531
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 32 ( 2017-08-08), p. 8528-8531
    Abstract: UV light suppresses experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, in mice and may be responsible for the decreased incidence of MS in equatorial regions. To test this concept further, we applied commercially available sunblock preparations to mice before exposing them to UV radiation. Surprisingly, some of the sunblock preparations blocked EAE without UV radiation. Furthermore, various sunblock preparations had variable ability to suppress EAE. By examining the components of the most effective agents, we identified homosalate and octisalate as the components responsible for suppressing EAE. Thus, salates may be useful in stopping the progression of MS, and may provide new insight into mechanisms of controlling autoimmune disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 9 ( 2019-02-26), p. 3734-3739
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 9 ( 2019-02-26), p. 3734-3739
    Abstract: In herpes simplex virus type 1 (HSV-1) infection, the coupling of genome replication and transcription regulation has been known for many years; however, the underlying mechanism has not been elucidated. We performed a comprehensive transcriptomic assessment and factor-binding analysis for Pol II, TBP, TAF1, and Sp1 to assess the effect genome replication has on viral transcription initiation and elongation. The onset of genome replication resulted in the binding of TBP, TAF1, and Pol II to previously silent late promoters. The viral transcription factor, ICP4, was continuously needed in addition to DNA replication for activation of late gene transcription initiation. Furthermore, late promoters contain a motif that closely matches the consensus initiator element (Inr), which robustly bound TAF1 postreplication. Continued DNA replication resulted in reduced binding of Sp1, TBP, and Pol II to early promoters. Therefore, the initiation of early gene transcription is attenuated following DNA replication. Herein, we propose a model for how viral DNA replication results in the differential utilization of cellular factors that function in transcription initiation, leading to the delineation of kinetic class in HSV-productive infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 49 ( 2019-12-03), p. 24527-24532
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 49 ( 2019-12-03), p. 24527-24532
    Abstract: Vitamin D is produced in the skin following exposure to sunlight. Ultraviolet (UV) B (UVB, 280–310 nm) results in isomerization of 7-dehydrocholesterol to previtamin D that spontaneously isomerizes to vitamin D. This pool of skin-derived vitamin D is the major source of vitamin D for animals. However, the mechanisms by which it becomes available remain undefined. It has been assumed that cutaneous vitamin D is transported into the circulation by vitamin D binding protein (DBP), but experimental evidence is lacking. To determine whether cutaneous vitamin D is transported by DBP, we utilized DBP −/− mice that were made vitamin D-deficient. These animals lack measurable 25(OH)D in blood and are hypocalcemic. As controls, DBP +/+ animals were vitamin D depleted and made equally hypocalcemic. UV irradiation of DBP +/+ animals restored serum calcium and serum 25(OH)D while the same treatment of DBP −/− animals failed to show either a serum calcium or 25(OH)D response despite having normal vitamin D production in skin. Intravenous injection of small amounts of recombinant DBP to the vitamin D-deficient DBP −/− mice restored the response to UV light. These results demonstrate a requirement for DBP to utilize cutaneously produced vitamin D.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...