GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (4)
  • The American Physiological Society (APS)  (1)
  • 2015-2019  (5)
  • 1
    Publication Date: 2015-03-12
    Description: Oscillatory patterns permeate the universe and are essential requisite in living cells. Circadian clocks exist at the subcellular and single-cell level. Chromatin is assembled into rhythmic oscillatory domains driving stem cell growth/differentiation up to higher hierarchical embryo development. The cytoskeleton is organized as rhythmically oscillating networks, producing radioelectric fields that may turn local events into non-local, long-ranging paths. For decades, scientists have used chemical tools to affect cell behaviour. However, this view is now deeply challenged. Consonant with a major role of physical forces in living processes is the use of physical energies to modulate cell dynamics. To explore cell biology in the light of physics, we have recently established the Stem Wave Institute for Tissue Healing, within the context of GVM Care & Research—E.S. Health Science Foundation, Lugo, Italy. Here, we will discuss our recent findings that proper delivery of radioelectric fields is able to (i) finely tune stem cell multipotency, (ii) directly reprogramme human skin fibroblasts into cardiac-, neuronal-, and skeletal muscle-like cells, and (iii) revert stem cell senescence. We are dissecting vibrational modes as inherent properties of living cells, entailing nanomechanical signatures that can be used to direct stem cell fate. Mild mechanical forces are deployed to obtain human fluid tissues harbouring stem cells within their stromal–vascular niche. Synthetic molecules are designed to afford stem cell pluripotency. These discoveries prompt a deeper understanding of the interconnections between the physical universe and the living world in the attempt to further approach the information of Life.
    Print ISSN: 1520-765X
    Electronic ISSN: 1554-2815
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-21
    Description: Arsenic-induced health effects may be associated with critically shortened telomeres. However, few data are available on the effects of arsenic exposure on telomere length. The aim of this study was to investigate the effects of chronic arsenic exposure on leukocyte telomere length (LTL) as well as the contribution of common polymorphisms in genes implicated in arsenic metabolism (GSTT1 and GSTM1) and DNA repair (hOGG1 and XRCC1). A group of 241 healthy subjects was enrolled from four areas of Italy known to be affected by natural or anthropogenic arsenic pollution. Urine samples were tested for inorganic As (iAs), monomethylarsinic (MMA) and dimethylarsinic acid (DMA). LTL was evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Genotyping was carried out by PCR-RFLP on leukocyte DNA. In multiple linear regression analysis, LTL was significantly and inversely correlated with age (β = –0.231, P = 0.006) and showed a certain trend toward significance with iAs urinary concentration (log 10 iAs, β = –0.106, P = 0.08). The genotype distribution showed significant associations between GSTT1 and the As concentration (log 10 iAs, P = 0.01) and metabolite patterns (log 10 DMA, P = 0.05) in the urine. However, GST genes did not interact with arsenic exposure in the modulation of LTL. Conversely, the combined presence of a higher level of iAs + MMA + DMA ≥ 19.3 μg/l ( F = 6.0, P interaction = 0.01), Asi ≥ 3.86 ( F = 3.9, P interaction = 0.04) μg/l, iAs + MMA + DMA ≥ 15 μg/l ( F = 4.2, P interaction = 0.04) and hOGG1 Cys allele was associated with a significantly lower LTL. An interaction between XRCC1 Arg399Gln and arsenic exposure was also observed (all P interaction = 0.04). These findings suggest that telomere shortening may represent a mechanism that contributes to arsenic-related disease. The interaction of hOGG1 and XRCC1 DNA repair polymorphisms and exposure enhances telomeric DNA damage. Future studies are warranted to understand better the epidemiologic impact of arsenic on telomere function as well as to identify the subgroups of exposed subjects who need better health surveillance.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-20
    Description: Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-22
    Description: Lung cancer is the leading cause of cancer death worldwide. Low-dose computed tomography screening (LDCT) was recently shown to anticipate the time of diagnosis, thus reducing lung cancer mortality. However, concerns persist about the feasibility and costs of large-scale LDCT programs. Such concerns may be addressed by clearly defining the target "high-risk" population that needs to be screened by LDCT. We recently identified a serum microRNA signature (the miR-Test) that could identify the optimal target population. Here, we performed a large-scale validation study of the miR-Test in high-risk individuals (n = 1115) enrolled in the Continuous Observation of Smoking Subjects (COSMOS) lung cancer screening program. The overall accuracy, sensitivity, and specificity of the miR-Test are 74.9% (95% confidence interval [CI] = 72.2% to 77.6%), 77.8% (95% CI = 64.2% to 91.4%), and 74.8% (95% CI = 72.1% to 77.5%), respectively; the area under the curve is 0.85 (95% CI = 0.78 to 0.92). These results argue that the miR-Test might represent a useful tool for lung cancer screening in high-risk individuals.
    Electronic ISSN: 1460-2105
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-02
    Description: Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...