GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Milton :Taylor & Francis Group,  (1)
  • Newark :John Wiley & Sons, Incorporated,
  • 2015-2019  (1)
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: Surveys recent advances in conducting polymers and their composites. Chapters address synthetic approaches, and applications in all types of electrochemical energy storage devices and next-generation devices. Evaluates the execution of these materials as electrodes in electrochemical power sources.
    Type of Medium: Online Resource
    Pages: 1 online resource (353 pages)
    Edition: 1st ed.
    ISBN: 9780429510885
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editors -- Chapter 1. Polythiophene-Based Battery Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Electrochemical Polymerization -- 1.2.2 Chemical Synthesis -- 1.3 Battery Applications of PTs -- 1.3.1 PTs as Cathodic Materials -- 1.3.1.1 PTs as Active Materials -- 1.3.1.2 PTs as Binder -- 1.3.1.3 PTs as Conduction-Promoting Agents -- 1.3.2 PTs as Air Cathode -- 1.3.2.1 Li-Air Batteries -- 1.3.2.2 Aluminum-Air Battery -- 1.3.2.3 Zinc-Air Battery -- 1.3.3 PTs as Anodic Materials -- 1.3.3.1 PTs as Active Materials for Anode -- 1.3.3.2 PTs as Binders -- 1.3.3.3 PTs as Conduction Promoting Agents (CPAs) -- 1.3.4 PTs as Battery Separators -- 1.3.4.1 Li-Ion Batteries -- 1.3.4.2 Li-S Batteries -- 1.3.4.3 Li-O2 Batteries -- 1.3.5 PTs as Electrolytes -- 1.3.6 PTs as Coin-cell Cases -- 1.3.7 PTs as Li-O2 Catalyst -- 1.4 Conclusion -- References -- Chapter 2. Synthetic Strategies and Significant Issues for Pristine Conducting Polymers -- 2.1 Introduction -- 2.2 Conduction Mechanism -- 2.3 Synthesis of Conducting Polymers -- 2.3.1 Synthesis through Polymerization -- 2.3.1.1 Chain-Growth Polymerization -- 2.3.1.2 Step-Growth Polymerization -- 2.3.2 Synthesis by Doping with Compatible Dopants -- 2.3.2.1 Types of Doping Agents -- 2.3.2.2 Doping Techniques -- 2.3.2.3 Mechanism of Doping -- 2.3.2.4 Influence of Doping on Conductivity -- 2.3.3 Electrochemical Polymerization -- 2.3.4 Photochemical Synthesis -- 2.4 Various Issues for Synthesis -- 2.4.1 Vapor-Phase Polymerization -- 2.4.2 Hybrid Conducting Polymers -- 2.4.3 Nanostructure Conducting Polymers -- 2.4.4 Narrow Bandgap Conducting Polymers -- 2.4.5 Synthesis in Supercritical CO2 -- 2.4.6 Biodegradability and Biocompatibility of Conducting Polymers -- 2.5 Applications. , 2.6 Future Scope for Applications -- 2.7 Conclusions -- Abbreviations -- References -- Chapter 3. Conducting Polymer Derived Materials for Batteries -- 3.1 Introduction -- 3.2 Theory -- 3.3 Discussion on Conducting Polymer-Derived Materials -- 3.3.1 PEDOT Derivatives -- 3.3.1.1 Structural Properties -- 3.3.1.2 Electrochemical Studies of PEDOT and Its Derivatives -- 3.3.1.3 Magnetic Properties -- 3.3.2 PPy for the Energy-Storage Devices -- 3.3.2.1 Structural Property of PPy -- 3.3.2.2 Electrochemical Properties of Polypyrrol -- 3.3.2.3 Magnetic Properties -- 3.3.3 PANI for Battery Application -- 3.3.3.1 Structural Properties -- 3.3.3.2 Electrochemical Properties of PANI for Battery Electrode -- 3.3.3.3 Magnetic Properties of PANI -- 3.4 Summary and Conclusions -- References -- Chapter 4. An Overview on Conducting Polymer-Based Materials for Battery Application -- 4.1 Introduction -- 4.2 Principle of Conducting Polymer Battery -- 4.3 Assortment of Conducting Polymer Electrodes for Battery Application -- 4.4 Mechanism of Conducting Polymers in Rechargeable Batteries -- 4.5 Organic Conducting Polymer for Lithium-ion Battery -- 4.5.1 Types of Organic Conducting Polymers -- 4.6 Synthesis of Conducting Polymer -- 4.6.1 Hard-template Method -- 4.6.2 Soft-template Method -- 4.6.3 Template-free Technique -- 4.6.4 Self-Assembly or Interfacial -- 4.6.5 Electrospinning -- 4.7 Characterization -- 4.7.1 Surface Characterization by AFM and AFMIR -- 4.7.2 Transmission Electron Microscopy -- 4.7.3 Electrochemical Characterization -- 4.8 Applications of Various Conducting Polymers in Battery -- 4.8.1 Polyacetylene Battery -- 4.8.2 Polyaniline Batteries -- 4.8.3 Poly (p-phenylene) Batteries -- 4.8.4 Heterocyclic Polymer Batteries -- 4.9 Summary and Outlook -- References -- Chapter 5. Polymer-Based Binary Nanocomposites -- 5.1 Introduction -- 5.2 Binary Composites. , 5.3 Nanostructured CPs -- 5.4 Strategies to Improve Performance -- 5.4.1 Low-dimensional Capacitors -- 5.4.2 Hybrid Capacitors -- 5.4.2.1 Hybrid Electrode Material -- 5.5 CP/Carbon-based Binary Composite -- 5.6 CP/Metal Oxides Binary Composites -- 5.7 CP/Metal Sulfides Binary Complexes -- 5.8 Other Cp-supported Binary Complexes -- 5.9 Conclusion -- References -- Chapter 6. Polyaniline-Based Supercapacitor Applications -- 6.1 Introduction -- 6.2 Polyaniline (PANI) and Its Application Potential -- 6.3 Supercapacitors -- 6.3.1 PANI in Supercapacitors -- 6.3.2 PANI and Carbon Composites -- 6.3.3 PANI/Porous and Carbon Composites -- 6.3.4 PANI/Graphene Composites -- 6.3.5 PANI/CNTs Composites -- 6.3.6 Polyaniline Activation/Carbonization -- 6.3.7 Composites of Polyaniline with Various Conductive Polymer Blends -- 6.3.8 Composites of Polyaniline with Transition Metal Oxides -- 6.3.9 Composites of Polyaniline Core-Shells with Metal Oxides -- 6.3.10 PANI-modified Cathode Materials -- 6.3.11 PANI-modified Anode Materials -- 6.4 Redox-active Electrolytes for PANI Supercapacitors -- 6.5 Examples of Various Polyaniline-based Supercapacitor -- 6.5.1 Composites of Polyaniline Doped with CoCl2 as Materials for Electrodes -- 6.5.2 Composites of Polyaniline Nanofibers with Graphene as materials for electrodes -- 6.5.3 Composites of Polyaniline (PANI) with Graphene Oxide as Electrode Materials -- 6.5.4 Hybrid Films of Manganese Dioxide and Polyaniline as Electrode Materials -- 6.5.5 Composites of Activated Carbon/Polyaniline with Tungsten Trioxide as Electrode Materials -- 6.5.6 PANI- and MOF-based Flexible Solid-state Supercapacitors -- 6.5.7 Polyaniline-based Nickel Electrodes for Electrochemical Supercapacitors -- 6.5.8 Hydrogel of Ultrathin Pure Polyaniline Nanofibers in Supercapacitor Application -- Conclusion -- Acknowledgements -- References. , Chapter 7. Conductive Polymer-derived Materials for Supercapacitor -- 7.1 Introduction -- 7.2 Types of Supercapacitor -- 7.3 Parameters of Supercapacitors -- 7.4 Conducting Polymers (CPs) as Electrode Materials -- 7.4.1 Class of Conducting Polymer as Supercapacitor Electrode -- 7.5 Polyaniline (PANI)-based Electrode -- 7.6 Polypyrrole (PPy)-based Electrode -- 7.7 Polythiophene (PTh)-based Electrode -- 7.8 Conclusions -- Acknowledgement -- References -- Chapter 8. Conducting Polymer-Metal Based Binary Composites for Battery Applications -- 8.1 Conducting polymer (CPs) -- 8.2 Conducting polymers conductivity -- 8.3 Conducting polymer composites -- 8.3.1 Metal center nanoparticles -- 8.3.2 Metal nanoparticles -- 8.4 Conducting Polymer Based Binary Composites -- 8.4.1 Metal Matrix Composites (MMC) -- 8.4.2 Poly (Thiophene) composite -- 8.4.3 Poly (Para-Phenylene Vinylene) composite -- 8.4.4 Poly (Carbazole) composite -- 8.4.5 Vanadium oxide based conducting composite -- 8.4.6 PANI-V2O5 composite -- 8.4.7 Poly(N-sulfo propyl aniline)-V2O5 composite -- 8.5 Conducting polymer composite battery applications -- 8.5.1 Conducting polymer composite for Lithium-ion (Li+) based battery -- 8.5.2 Conducting polymer composites for Sodium-ion (Na+) based Battery -- 8.5.3 Conducting Polymer composite for Mg-Ion (Mg+2) Based Battery -- 8.6 Conducting polymer based composites for electrode materials -- References -- Chapter 9. Novel Conducting Polymer-Based Battery Application -- 9.1 Conducting Polymers (CPs) -- 9.1.1 Poly(Acetylene) -- 9.1.2 Poly(Thiophene) -- 9.1.3 Poly(Aniline) -- 9.1.4 Poly(Pyrrole) -- 9.1.5 Poly(Paraphenylene) and Poly(Phenylene) -- 9.2 Battery Applications of Conducting Polymers -- 9.2.1 Lithium Sulfide batteries -- 9.2.2 Binder for Lithium sulfide battery cathode -- 9.2.3 Sulfur encapsulation for electrode materials. , 9.2.4 Sulfur Encapsulation through Conductive Polymers -- 9.2.5 Conducting polymer anodes for Lithium sulfide battery -- 9.2.6 Conducting polymer as materials interlayer -- 9.3 Li+-ion-based Battery Applications of Conducting Polymers -- 9.4 Na+- ion-based Battery Applications of Conducting Polymers -- 9.5 Mg+2-ion-based Battery Applications of Conducting Polymers -- References -- Chapter 10. Conducting Polymer-Carbon-Based Binary Composites for Battery Applications -- Abbreviations -- 10.1 Introduction -- 10.2 Batteries -- 10.2.1 Types of Batteries -- 10.2.2 Electrode Materials -- 10.3 Conducting Polymer-Carbon-Based Binary Composite in Battery Applications -- 10.3.1 Polyaniline PANI-Carbon-Based Composite -- 10.3.2 Polypyrrole (PPy)-Carbon-Based Composite -- 10.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Carbon-Based Composite -- 10.3.4 Others Conducting Polymer-Carbon-Based Composite -- 10.4 Conclusions -- Acknowledgements -- References -- Chapter 11. Polyethylenedioxythiophene-Based Battery Applications -- 11.1 Chemistry of PEDOT -- 11.1.1 PEDOT Synthesis and Morphology -- 11.1.1.1 Synthetic Techniques to Achieve Desired Morphologies -- 11.1.2 PEDOT-Based Nanocomposites -- 11.2 PEDOT-Based Polymers in Lithium-Sulfur Batteries -- 11.3 Lithium-Air Battery Based on PEDOT or PEDOT:PSS -- 11.3.1 PEDOT-Based Nanocomposites for Li-O2 Batteries -- 11.3.2 PEDOT:PSS-Based Li-O2 Battery Cathodes -- 11.4 Lithium and Alkali Ion Polythiophene Batteries -- 11.4.1 Cathodes -- 11.4.1.1 Cathode Binders and Composites -- 11.4.2 Anodes -- 11.4.2.1 Anode Binders and Composites -- 11.4.3 All-Polythiophene and Metal-Free Batteries -- References -- Chapter 12. Polythiophene-Based Supercapacitor Applications -- 12.1 Introduction -- 12.2 Properties of Polythiophene (PTh) -- 12.3 Synthesis of Polythiophene -- 12.4 Charge Storage in Polythiophene Electrochemical Capacitors. , 12.5 Polythiophene Electrode Fabrication.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...