GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (6)
  • 2015-2019  (6)
Material
Publisher
  • MDPI AG  (6)
Language
Years
  • 2015-2019  (6)
Year
  • 1
    In: Remote Sensing, MDPI AG, Vol. 8, No. 7 ( 2016-06-30), p. 558-
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 8, No. 7 ( 2016-06-24), p. 536-
    Abstract: The atmospheric correction of satellite observations is crucial for both land and ocean remote sensing. However, the optimal approach for each area is different due to the large spectra difference in the ground reflectance between land and ocean. A unified atmospheric correction (UAC) approach based on a look-up table (LUT) of in situ measurements is developed to remove this difference. The LUT is used to select one spectrum as the in situ ground reflectance needed to obtain the initial aerosol reflectance, which in turn is used for determining the two closest aerosol models. The aerosol reflectance, obtained from these aerosol models, is then used to deduce the estimated ground reflectance. This UAC model is then used to process the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data, and its performance is validated with a large number of in situ measurements. The mean bias of the land reflectance for this model is 6.59% with a root mean square error (RMSE) of 19.61%. The mean bias and RMSE of the water-leaving reflectance are 7.59% and 17.10% validated by the in situ measurements using the above-water method, while they are 13.60% and 22.53% using the in-water method. The UAC model provides a useful tool for correcting the satellite-received reflectance without separately having to deal with land and ocean pixels. Further, it can seamlessly expand the satellite ocean color data for terrestrial use and improve quantitative remote sensing over land.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Water, MDPI AG, Vol. 8, No. 3 ( 2016-03-19), p. 108-
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 11, No. 21 ( 2019-10-24), p. 2486-
    Abstract: Accurate prediction of sea surface emission is the key for sea surface salinity retrieval from satellite microwave radiometer. In order to retrieve salinity from satellite observation, several sea surface microwave emission models have been developed based on theoretical or empirical methods and validated by in-situ measurements in different regions. However, their performances are still unclear in the Chinese coastal waters. In this study, based on two cruises measurements in the East China Sea (ECS), including the brightness temperature measured by a shipborne microwave radiometer and other auxiliary data (sea surface salinity, sea surface temperature and wind speed), the performances of different sea surface emission models are tested. The results showed that the developed models provide fairly good accuracy in predicting brightness temperature; for example, the accuracy of small perturbance/small scale approximation model (SPM/SSA), two-scale model (TSM) and empirical model is in the range from 0.6 K to 3 K. Moreover, the TSM and empirical models are further improved by optimizing the model parameters in the ECS. Finally, the sea surface salinity were retrieved from shipborne measured data based on the improved models, and the results show that the root mean square (rms) differences between retrieved and in-situ sea surface salinity is about 0.4 psu, indicating the significant improvement by the regional model parameters.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 12, No. 1 ( 2019-12-19), p. 31-
    Abstract: The coverage of valid pixels of remote-sensing reflectance (Rrs) from ocean color imagery is relatively low due to the presence of clouds. In fact, it is also related to the presence of high aerosol optical depth (AOD) and other factors. In order to increase the valid coverage of satellite-retrieved products, a layer removal scheme for atmospheric correction (LRSAC) has been developed to process the ocean color data. The LRSAC used a five-layer structure including atmospheric absorption layer, Rayleigh scattering layer, aerosol scattering layer, sea surface reflection layer, and water-leaving reflectance layer to deal with the relationship of the components of the atmospheric correction. A nonlinear approach was used to solve the multiple reflections of the interface between two adjoining layers and a step-by-step procedure was used to remove effects of each layer. The LRSAC was used to process data from the sea-viewing wide field-of-view sensor (SeaWiFS) and the results were compared with standard products. The average of valid pixels of the global daily Rrs images of the standard products from 1997 to 2010 is only 11.5%, while it reaches up to 30.5% for the LRSAC. This indicates that the LRSAC recovers approximately 1.65 times of invalid pixels as compared with the standard products. Eight-day standard composite images exhibit many large areas with invalid values due to the presence of high AOD, whereas these areas are filled with valid pixels wusing the LRSAC. The ratio image of the mean valid pixel of the LRSAC to that of the standard products indicates that the number of valid pixels of the LRSAC increases with an increase of AOD. The LRSAC can increase the number of valid pixels by more than two times in about 33.8% of ocean areas with high AOD values. The accuracy of Rrs from the LRSAC was validated using the following two in situ datasets: the Marine Optical BuoY (MOBY) and the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Most matchup pairs are distributed around the 1:1 line indicating that the systematic bias of the LRSAC is relatively small. The global mean relative error (MRE) of Rrs is 7.9% and the root mean square error (RMSE) is 0.00099 sr−1 for the MOBY matchups. Similarly, the MRE and RMSE are 2.1% and 0.0025 sr−1 for the NOMAD matchups, respectively. The accuracy of LRSAC was also evaluated by different groups of matchups according to the increase of AOD values, indicating that the errors of Rrs were little affected by the presence of high AOD values. Therefore, the LRSAC can significantly improve the coverage of valid pixels of Rrs with a similar accuracy in the presence of high AOD.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Remote Sensing Vol. 11, No. 4 ( 2019-02-13), p. 379-
    In: Remote Sensing, MDPI AG, Vol. 11, No. 4 ( 2019-02-13), p. 379-
    Abstract: In this study, the goal is to estimate the sedimentation on the bottom bed of Lake Taihu using numerical simulation combined with geostationary satellite ocean color data. A two-dimensional (2D) model that couples the dynamics of shallow water and sediment transport is presented. The shallow water equations are solved using a semi-implicit finite difference method with an Alternating Direction Implicit (ADI) method. Suspended sediment transport is simulated by solving the general convection-diffusion equation with resuspension and deposition terms using a second-order explicit central difference method in space and two-step Adams–Bashforth method in time. Moreover, the total suspended particulate matter (TSM) is retrieved by the world’s first geostationary satellite ocean color sensor Geostationary Ocean Color Imager (GOCI) using atmospheric correction algorithm for turbid waters using ultraviolet wavelengths (UV-AC) and regional empirical TSM algorithm. The 2D model and GOCI-retrieved TSM are applied to study the sediment transport and sedimentation in Lake Taihu. Validation results show rationale TSM concentration retrieved by GOCI, and the simulated TSM concentrations are consistent with GOCI observations. In addition, simulated sedimentation results reveal the dangerous locations that must be observed and desilted.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...