GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Forests, MDPI AG, Vol. 10, No. 12 ( 2019-12-02), p. 1095-
    Abstract: Research Highlights: A transparent approach to developing a forest reference emissions level (FREL) adjusted to future local developments in Southern Cameroon is demonstrated. Background and Objectives: Countries with low historical deforestation can adjust their forest reference (emission) level (FREL/FRL) upwards for REDD+ to account for likely future developments. Many countries, however, find it difficult to establish a credible adjusted reference level. This article demonstrates the establishment of a FREL for southern Cameroon adjusted to societal megatrends of strong population—and economic growth combined with rapid urbanization. It demonstrates what can be done with available information and data, but most importantly outlines pathways to further improve the quality of future FREL/FRL’s in light of possibly accessing performance-based payments. Materials and Methods: The virtual FREL encompasses three main elements: Remotely sensed activity data; emission factors derived from the national forest inventory; and the adjustment of the reference level using a land use model of the agriculture sector. Sensitivity analysis is performed on all three elements using Monte Carlo methods. Results: Deforestation during the virtual reference period 2000–2015 is dominated by non-industrial agriculture (comprising both smallholders and local elites) and increases over time. The land use model projections are consistent with this trend, resulting in emissions that are on average 47% higher during the virtual performance period 2020–2030 than during the reference period 2000–2015. Monte Carlo analysis points to the adjustment term as the main driver of uncertainty in the FREL calculation. Conclusions: The available data is suitable for constructing a FREL for periodic reporting to the UNFCCC. Enhanced coherence of input data notably for activity data and adjustment is needed to apply for a performance-based payment scheme. Expanding the accounting framework to include forest degradation and forest gain are further priorities requiring future research.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Forests, MDPI AG, Vol. 10, No. 4 ( 2019-04-15), p. 337-
    Abstract: Climate change continues to threaten forests and their ecosystem services while substantially altering natural disturbance regimes. Land cover changes and consequent management entail discrepancies in carbon sequestration provided by forest ecosystems and its accounting. Currently there is a lack of sufficient and harmonized data for Ukraine that can be used for the robust and spatially explicit assessment of forest provisioning and regulation of ecosystem services. In the frame of this research, we established an experimental polygon (area 45 km2) in Northern Ukraine aiming at estimating main forest carbon stocks and fluxes and determining the impact caused by natural disturbances and harvest for the study period of 2010–2015. Coupled field inventory and remote sensing data (RapidEye image for 2010 and SPOT 6 image for 2015) were used. Land cover classification and estimation of biomass and carbon pools were carried out using Random Forest and k-Nearest Neighbors (k-NN) method, respectively. Remote sensing data indicates a ca. 16% increase of carbon stock, while ground-based computations have shown only a ca. 1% increase. Net carbon fluxes for the study period are relatively even: 5.4 Gg C·year−1 and 5.6 Gg C C·year−1 for field and remote sensing data, respectively. Stand-replacing wildfires, as well as insect outbreaks and wind damage followed by salvage logging, and timber harvest have caused 21% of carbon emissions among all C sources within the experimental polygon during the study period. Hence, remote sensing data and non-parametric methods coupled with field data can serve as reliable tools for the precise estimation of forest carbon cycles on a regional spatial scale. However, featured land cover changes lead to unexpected biases in consistent assessment of forest biophysical parameters, while current management practices neglect natural forest dynamics and amplify negative impact of disturbances on ecosystem services.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Forests, MDPI AG, Vol. 10, No. 7 ( 2019-07-11), p. 579-
    Abstract: Forests play an important role in regulating the carbon (C) cycle. The main objective of this study was to quantify the effects of South Korean national reforestation programs on carbon budgets. We estimated the changes in C stocks and annual C sequestration in the years 1961–2014 using Korea-specific models, a forest cover map (FCM), national forest inventory (NFI) data, and climate data. Furthermore, we examined the differences in C budgets between Cool forests (forests at elevations above 700 m) and forests in lower-altitude areas. Simulations including the effects of climate conditions on forest dynamics showed that the C stocks of the total forest area increased from 6.65 Tg C in 1961 to 476.21 Tg C in 2014. The model developed here showed a high degree of spatiotemporal reliability. The mean C stocks of the Cool forests and other forests increased from 4.03 and 0.43 Mg C ha−1, respectively, to 102.43 and 73.76 Mg C ha−1 at a rate of 1.82 and 1.36 Mg C ha−1 yr−1 during the same period. These results imply that, although the total Cool forest area of South Korea occupied only about 12.3% (772,788 ha) of the total forest area, the Cool forests play important roles in C balances and forest ecosystems in South Korea. Annual C sequestration totals are projected to decrease at a low rate in the near future because the overall growth rate of a mature forest decreases as the stand ages. Our results quantified forest C dynamics in South Korean forests before and after national reforestation programs. Furthermore, our results can help in development of regional and national forest management strategies to allow for sustainable development of society and to cope with climate change in South Korea.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Energies, MDPI AG, Vol. 12, No. 3 ( 2019-01-29), p. 420-
    Abstract: Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Forests, MDPI AG, Vol. 9, No. 4 ( 2018-04-21), p. 223-
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Forests, MDPI AG, Vol. 9, No. 7 ( 2018-07-20), p. 437-
    Abstract: Large-scale wildfires affect millions of hectares of land in Indonesia annually and produce severe smoke haze pollution and carbon emissions, with negative impacts on climate change, health, the economy and biodiversity. In this study, we apply a mechanistic fire model to estimate burned area in Indonesia for the first time. We use the Wildfire Climate Impacts and Adaptation Model (FLAM) that operates with a daily time step on the grid cell of 0.25 arc degrees, the same spatio-temporal resolution as in the Global Fire Emissions Database v4 (GFED). GFED data accumulated from 2000–2009 are used for calibrating spatially-explicit suppression efficiency in FLAM. Very low suppression levels are found in peatland of Kalimantan and Sumatra, where individual fires can burn for very long periods of time despite extensive rains and fire-fighting attempts. For 2010–2016, we validate FLAM estimated burned area temporally and spatially using annual GFED observations. From the validation for burned areas aggregated over Indonesia, we obtain Pearson’s correlation coefficient separately for wildfires and peat fires, which equals 0.988 in both cases. Spatial correlation analysis shows that in areas where around 70% is burned, the correlation coefficients are above 0.6, and in those where 30% is burned, above 0.9.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Forests, MDPI AG, Vol. 9, No. 6 ( 2018-06-01), p. 312-
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Forests, MDPI AG, Vol. 10, No. 6 ( 2019-06-23), p. 523-
    Abstract: The mid-latitude ecotone (MLE)—a transition zone between boreal and temperate forests, which includes the regions of Northeast Asia around 30°–60° N latitudes—delivers different ecosystem functions depending on different management activities. In this study, we assessed forest volume and net primary productivity changes in the MLE of Northeast Asia under different ecological characteristics, as well as various current management activities, using the BioGeoChemistry Management Model (BGC-MAN). We selected five pilot sites for pine (Scots pine and Korean red pine; Pinus sylvestris and P. densiflora), oak (Quercus spp.), and larch forests (Dahurian larch and Siberian larch; Larix gmelinii and L. sibirica), respectively, which covered the transition zone across the MLE from Lake Baikal, Russia to Kyushu, Japan, including Mongolia, Northeast China, and the Korean Peninsula. With site-specific information, soil characteristics, and management descriptions by forest species, we established their management characteristics as natural preserved forests, degraded forests, sandy and cold forest stands, and forests exposed to fires. We simulated forest volume (m3) and net primary productivity (Mg C ha−1) during 1960–2005 and compared the results with published literature. They were in the range of those specified in previous studies, with some site-levels under or over estimation, but unbiased estimates in their mean values for pine, oak, and larch forests. Annual rates of change in volume and net primary productivity differed by latitude, site conditions, and climatic characteristics. For larch forests, we identified a high mountain ecotype which warrants a separate model parameterization. We detected changes in forest ecosystems, explaining ecological transition in the Northeast Asian MLE. Under the transition, we need to resolve expected problems through appropriate forest management and social efforts.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...