GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • 2015-2019  (3)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Molecular Sciences Vol. 20, No. 22 ( 2019-11-17), p. 5778-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 22 ( 2019-11-17), p. 5778-
    Abstract: Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 9, No. 4 ( 2019-04-10), p. 591-
    Abstract: Dentin hypersensitivity (DH) is one of the most common clinical conditions usually associated with exposed dentinal surfaces. In this study, we identified the effectiveness of poly(amidoamine) (PAMAM) dendrimer-coated mesoporous bioactive glass nanoparticles (MBN) (PAMAM@MBN) on DH treatment, examining the ion-releasing effect, dentin remineralization, and the occluding effect of dentinal tubules. We synthesized MBN and PAMAM@MBN. After soaking each sample in simulated body fluid (SBF), we observed ion-releasing effects and dentin remineralization effects for 30 days. Also, we prepared 30 premolars to find the ratio of occluded dentinal tubules after applying MBN and PAMAM@MBN, respectively. The results showed that PAMAM did not disrupt the calcium ion-releasing ability or the dentin remineralization of MBN. The PAMAM@MBN showed a better occluding effect for dentinal tubules than that of MBN (p 〈 0.05). In terms of dentinal tubule occlusion, the gap between MBN was well occluded due to PAMAM. This implies that PAMAM@MBN could be effectively used in dentinal tubule sealing and remineralization.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Molecules Vol. 25, No. 1 ( 2019-12-20), p. 41-
    In: Molecules, MDPI AG, Vol. 25, No. 1 ( 2019-12-20), p. 41-
    Abstract: Methanol is metabolized in the body to highly toxic formaldehyde and formate when consumed accidentally. Methanol has been typically analyzed with gas chromatography-flame ionization detector (GC-FID). However, its retention time may overlap with other volatile compounds and lead to confusion. Alternative analysis of methanol using gas chromatography/mass spectrometry (GC/MS) also has limitations due to its similar molecular weight with oxygen and low boiling point. In this study, methanol and internal standard of deuterium-substituted ethanol were derivatized with 3,4-dihydro-2H-pyran under acid catalysis using concentrated hydrochloric acid. The reaction products including 2-methoxytetrahydropyran were extracted with solid-phase microextraction followed by GC/MS analysis. This method was successfully applied to measure the lethal concentration of methanol in the blood of a victim with a standard addition method to overcome the complex matrix effect of the biospecimen. Identification of the metabolite formate by ion chromatography confirmed the death cause to be methanol poisoning. This new method was a much more convenient and reliable process to measure methanol in complex matrix samples by reducing sample pretreatment effort and cost.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...