GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOP Publishing  (2)
  • 2015-2019  (2)
Document type
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2020-11-23
    Description: Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Iron is represented in biogeochemical ocean models by a variety of structurally different approaches employing generally poorly constrained empirical parameterizations. Increasing the structural complexity of iron modules also increases computational costs and introduces additional uncertainties, with as yet unclear benefits. In order to demonstrate the benefits of explicitly representing iron, we calibrate a hierarchy of iron modules and evaluate the remaining model-data misfit. The first module includes a complex iron cycle with major processes resolved explicitly, the second module applies iron limitation in primary production using prescribed monthly iron concentration fields, and the third module does not explicitly include iron effects at all. All three modules are embedded into the same circulation model. Models are calibrated against global data sets of NO3, PO4 and O2 applying a state-of-the-art multi-variable constraint parameter optimization. The model with fully resolved iron cycle is marginally (up to 4.8%) better at representing global distributions of NO3, PO4 and O2 compared to models with implicit or absent parameterizations of iron. We also found a slow down of global surface nutrient cycling by about 30% and a shift of productivity from the tropics to temperate regions for the explicit iron module. The explicit iron model also reduces the otherwise overestimated volume of suboxic waters, yielding results closer to observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...