GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (1)
  • Gutachterpanel Forschungsschiffe  (1)
  • 2015-2019  (2)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2018-01-11
    Description: Assessing the role of sea ice algal biomass and primary production for polar ecosystems remains challenging due to the strong spatio-temporal variability of sea ice algae. Therefore, the spatial representativeness of sea ice algal biomass and primary production sampling remains a key issue in large-scale models and climate change predictions of polar ecosystems. To address this issue, we presented two novel approaches to up-scale ice algal chl a biomass and net primary production (NPP) estimates based on profiles covering distances of 100 to 1,000 s of meters. This was accomplished by combining ice core-based methods with horizontal under-ice spectral radiation profiling conducted in the central Arctic Ocean during summer 2012. We conducted a multi-scale comparison of ice-core based ice algal chl a biomass with two profiling platforms: a remotely operated vehicle and surface and under ice trawl (SUIT). NPP estimates were compared between ice cores and remotely operated vehicle surveys. Our results showed that ice core-based estimates of ice algal chl a biomass and NPP do not representatively capture the spatial variability compared to the remotely operated vehicle-based estimates, implying considerable uncertainties for pan-Arctic estimates based on ice core observations alone. Grouping sea ice cores based on region or ice type improved the representativeness. With only a small sample size, however, a high risk of obtaining non-representative estimates remains. Sea ice algal chl a biomass estimates based on the dominant ice class alone showed a better agreement between ice core and remotely operated vehicle estimates. Grouping ice core measurements yielded no improvement in NPP estimates, highlighting the importance of accounting for the spatial variability of both the chl a biomass and bottom-ice light in order to get representative estimates. Profile-based measurements of ice algae chl a biomass identified sea ice ridges as an underappreciated component of the Arctic ecosystem because chl a biomass was significantly greater in this unique habitat. Sea ice ridges are not easily captured with ice coring methods and thus require more attention in future studies. Based on our results, we provide recommendations for designing an efficient and effective sea ice algal sampling program for the summer season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-07
    Description: The 22 participating scientists from Germany, Norway, the Netherlands, Denmark, Sweden, Finland and the United States covered scientific expertise in (micro-) biology, chemistry, and oceanography. Apart from aerosol and rainwater collection, which was applied to assess atmospheric deposition, sampling was restricted to the water column. Phyto and zooplankton were sampled by vertical net hauls using a plankton net, multinet and a pump system for the filtration of large water volumes to collect different size classes of phytoplankton, followed by DNA and RNA extraction. Phytoplankton was also characterized and quantified onboard by microscopy and flow cytometry. Primary productivity was assessed in incubations in the isotope container using radiocarbon labels. Clonal cultures were established to identify selected key species. Bacterial abundance, community composition and production were also determined onboard. Chemical sampling and analytical parameters, most of which taken from the CTD water sampler, will be measured back in the home labs. The final dataset will cover inorganic nutrients, oxygen concentration, dissolved inorganic carbon, total alkalinity, He/Ne ratios for the estimation of basal melt water, δ18O for the contribution of meteoric water, particulate and dissolved organic carbon and nitrogen, optical properties (fluorescence), molecular characterization and radiocarbon age of organic matter. A FerryBox system continuously recorded surface water information on turbidity, chlorophyll fluorescence, temperature, salinity, colored dissolved organic matter and salinity. At each station, salinity and temperature profiles were recorded by the CTD system and by profiler deployments, which also recorded the spectral light profile in the water column. The vertical material flux was investigated by the deployment of drifting sediment traps, a camera system and a marine snow catcher.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...