GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BMJ Publishing Group  (1)
  • The American Society for Microbiology (ASM)  (1)
  • 2015-2019  (2)
  • 1
    Publication Date: 2015-01-15
    Description: In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l -fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli . We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-13
    Description: Background Several studies have suggested potential links of phthalates to obesity in children and adults. Limited evidence, however, has been available for the relations between diethylhexyl phthalate (DEHP) and obesity-related markers or body mass change in early life. Methods 128 healthy pregnant women were recruited and, after delivery, their newborns’ first urine and umbilical cord blood samples were collected. We measured urinary levels of two DEHP metabolites, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP). We also measured the levels of leptin, total cholesterol and triglyceride (TG) in cord serum, and used them along with weight, length, head circumference and ponderal index (PI, 100 g/cm 3 ) at birth, as obesity-related markers, and estimated the relations between DEHP metabolites and obesity-related markers using generalised linear models. For the evaluation of body mass increase by early life DEHP exposure, body mass index (BMI) z-score change during 3 months after birth by DEHP metabolites in the first urine samples of the newborns were evaluated using logistic regression. Results DEHP exposure was associated with decrease of PI and increase of TG (PI, β=–0.11, p=0.070 and TG, β=0.14, p=0.027), especially for boys (PI, β=–0.13, p=0.021; and TG, β=0.19, p=0.025). Moreover, DEHP exposure was positively associated with body mass increase during 3 months after birth (change of BMI z-scores, OR=4.35, p=0.025). Conclusions Our findings suggest that DEHP exposure may affect body mass change in early life through changes of obesity-related markers.
    Keywords: Open access, Health education, Obesity (public health), Health promotion
    Print ISSN: 0143-005X
    Electronic ISSN: 1470-2738
    Topics: Medicine
    Published by BMJ Publishing Group
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...