GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1)
  • International Phycological Society  (1)
  • 2015-2019  (2)
Document type
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2018-01-30
    Description: Fouling is a stressor that might determine the fate of seaweeds, but reports of algal adaptation to epibiosis are scarce. Previous comparisons have shown resistance to epibionts can be higher in non-native than in resident seaweed species, but we do not know whether it is an intrinsic trait of the non-natives or it has been acquired during the invasion process. We here compared native and non-native populations of the same algal species to elucidate this question. Resistance against two groups of epiphytes was assessed in living thalli and in artificial substrata coated with surface extracts, both gained from four Asian (native) and four European (non-native) populations of the red alga Gracilaria vermiculophylla. Two diatom species and two filamentous macroalgae were used as micro- and macro-epiphytes, and one of each type was collected in Asia, while the other came from Europe. Laboratory assays were done in both distributional ranges of G. vermiculophylla and in different seasons. We used a fully crossed design with the factors (i) ‘Origin of Gracilaria’, (ii) ‘Origin of epiphytes’, (iii) ‘Season’ and (iv) ‘Solvent used for extraction’. Both groups of epiphytes, regardless of their origin, attached less to living thalli and to surface extracts from non-native G. vermiculophylla. Fewer diatoms attached to hexane-based extracts, while fewer Ceramium filaments settled on extracts gained with dichloromethane. Our results show for the first time that non-native individuals of a seaweed are better defended against epiphytes than native conspecifics. Furthermore, we found evidence that at least a part of the defence is based on extractable secondary metabolites. We suggest that an enhanced defence against epiphytes after introduction is one reason for G. vermiculophylla’s invasion success. Our observation may also apply to other basibiont–epibiont interactions and could be a key feature of seaweed bioinvasions.
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-31
    Description: A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...