GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • American Geophysical Union
  • Springer
  • 2015-2019  (2)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 88 . pp. 724-738.
    Publication Date: 2020-02-06
    Description: Highlights • Features in GLORIA images match those in multibeam sonar data. • Salt walls suggested by lineaments in northern Red Sea. Abstract The Red Sea is an unusual example of a rift basin that transitioned from its evaporitic stage to fully open-ocean conditions at the end of the Miocene (∼5.3 Ma), much more recently than older Mesozoic margins around the Atlantic and Gulf of Mexico. The patterns of halokinetic deformation occurring in the Red Sea are potentially of interest for understanding more generally how evaporite deposits deform during this early stage. Relevant to this issue, a line of reconnaissance sidescan sonar data (GLORIA) collected along the Red Sea in 1979 is re-evaluated here. We first interpret the data with the aid of newly compiled bathymetry from multibeam sonars in the central and southern Red Sea. Features in the acoustic backscatter data are associated with ridges, valleys and rounded flow fronts produced by halokinetic deformation. Some areas of higher acoustic backscattering from the evaporites are suggested to relate to roughness produced by deformation of the evaporite surface. Within the volcanic (oceanic) axial valleys, areas of differing high and low backscattering suggest varied sediment cover and/or carbonate encrustations. With the benefit of the above experience, we then interpreted data from the northern Red Sea, where there are fewer multibeam data available. Rounded fronts of halokinetic deformation are present in the Zabargad Fracture Zone, a broad, shallow valley crossing the Red Sea obliquely. The presence of halokinetic deformation here is evidence that subsidence has occurred along the fracture zone. Elsewhere in the northern Red Sea, the GLORIA data reveal folds in the evaporite surface, suggesting local areas of convergence, like those implied by multibeam data from inter-trough zones further south. Some linear features are observed, many of which are likely to be ridges overlying salt walls. Interestingly, several such features are oriented along an accommodation zone that is oriented parallel to the plate spreading direction. Several rounded, corrugated features are interpreted as possible evaporite flow fronts. Overall, the impression from the data is of a strongly mobile seabed in the Red Sea because of halokinetic deformation, involving both vertical and horizontal movements. However, salt walls appear more common than in the central and southern axial Red Sea, where horizontal movements instead tend to dominate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 747/748 . pp. 327-342.
    Publication Date: 2020-01-02
    Description: Highlights • Deep seismic data reveal oceanic-like axial ridge beneath central Red Sea. • Axial high is similar to those of hotspot-affected spreading centres. • Bouguer anomalies predict low average density beneath axis. • This low density implies thickened crust and/or low mantle density. • Normal thickness predicted from Na8.0 implies recent transition from thinner crust. Abstract The Red Sea is an important example of a rifted continental shield proceeding to seafloor spreading. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. Contributing to this debate, we assess the basement geometry using seismic reflection and potential field data. We find that the basement topography from seismically derived structure corrected for evaporite and other sediment loading has an axial high with a width of 70–100 km and a height of 0.8–1.6 km. Basement axial highs are commonly found at mid-ocean ridges affected by hotspots, where enhanced mantle melting results in thickened crust. We therefore interpret this axial high as oceanic-like, potentially produced by recently enhanced melting associated with the broader Afar mantle anomaly. We also find the Bouguer gravity anomalies are strongly correlated with basement reflection depths. The apparent density contrast necessary to explain the Bouguer anomaly varies from 220 kg m−3 to 580 kg m−3 with no trend with latitude. These values are too small to be caused primarily by the density contrast between evaporites and mantle across a crust of uniform thickness and density structure, further supporting a thickened crustal origin for the axial high. Complicating interpretation, only a normal to modestly thickened axial crust is predicted from fractionation-corrected sodium contents (Na8.0), and the basement reflection is rugged, more typical of ultra-slow spreading ridges that are not close to hotspots. We try to reconcile these observations with recent results from seismic tomography, which show modest mantle S-wave velocity anomalies under this part of the Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...