GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • 2015-2019  (2)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Language
Years
  • 2015-2019  (2)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Translational Medicine Vol. 11, No. 485 ( 2019-03-27)
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 11, No. 485 ( 2019-03-27)
    Abstract: Connexins and pannexins are two protein families that play an important role in cellular communication. Pannexin 1 (PANX1), one of the members of pannexin family, is a channel protein. It is glycosylated and forms three species, GLY0, GLY1, and GLY2. Here, we describe four independent families in which mutations in PANX1 cause familial or sporadic female infertility via a phenotype that we term “oocyte death.” The mutations, which are associated with oocyte death, alter the PANX1 glycosylation pattern, influence the subcellular localization of PANX1 in cultured cells, and result in aberrant PANX1 channel activity, ATP release in oocytes, and mutant PANX1 GLY1. Overexpression of a patient-derived mutation in mice causes infertility, recapitulating the human oocyte death phenotype. Our findings demonstrate the critical role of PANX1 in human oocyte development, provide a genetic explanation for a subtype of infertility, and suggest a potential target for therapeutic intervention for this disease.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...