GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (4)
  • 2015-2019  (4)
Material
Publisher
  • American Association for Cancer Research (AACR)  (4)
Language
Years
  • 2015-2019  (4)
Year
Subjects(RVK)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 9, No. 7 ( 2019-07-01), p. 852-871
    Abstract: Previous studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)–derived organoid lines was established. This panel recapitulates genetic and molecular characteristics previously described for HNSCC. Organoids retain their tumorigenic potential upon xenotransplantation. We observe differential responses to a panel of drugs including cisplatin, carboplatin, cetuximab, and radiotherapy in vitro. Additionally, drug screens reveal selective sensitivity to targeted drugs that are not normally used in the treatment of patients with HNSCC. These observations may inspire a personalized approach to the management of HNSCC and expand the repertoire of HNSCC drugs. Significance: This work describes the culture of organoids derived from HNSCC and corresponding normal epithelium. These tumoroids recapitulate the disease genetically, histologically, and functionally. In vitro drug screening of tumoroids reveals responses to therapies both currently used in the treatment of HNSCC and those not (yet) used in clinical practice. See related commentary by Hill and D'Andrea, p. 828. This article is highlighted in the In This Issue feature, p. 813
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 12 ( 2017-06-15), p. 2942-2950
    Abstract: Purpose: Myeloid-derived suppressor cells (MDSC) are one of the major contributors to immune suppression in cancer. We recently have demonstrated in preclinical study that MDSCs are sensitive to TRAIL receptor 2 (TRAIL-R2) agonist. The goal of this study was to clinically test the hypothesis that targeting TRAIL-R2 can selectively eliminate MDSCs. Experimental Design: The TRAIL-R2 agonistic antibody (DS-8273a) has been tested in 16 patients with advanced cancers enrolled in a phase I trial. The antibody (24 mg/kg) was administered intravenously once every 3 weeks till disease progression, unacceptable toxicities, or withdrawal of consent. The safety and the presence of various populations of myeloid and lymphoid cells in peripheral blood and tumor tissues were evaluated. Results: The treatment was well tolerated with only mild to moderate adverse events attributable to the study drug. Treatment with DS-8273a resulted in reduction of the elevated numbers of MDSCs in the peripheral blood of most patients to the levels observed in healthy volunteers. However, in several patients, MDSCs rebounded back to the pretreatment level by day 42. In contrast, DS-8273a did not affect the number of neutrophils, monocytes, and other populations of myeloid and lymphoid cells. Decrease in MDSCs inversely correlated with the length of progression-free survival. In tumors, DS-8273a treatment resulted in a decrease of MDSCs in 50% of the patients who were able to provide pre- and on-treatment biopsies. Conclusions: Targeting TRAIL-R2 resulted in elimination of different populations of MDSCs without affecting mature myeloid or lymphoid cells. These data support the use of this antibody in combination immmunotherapy of cancer. Clin Cancer Res; 23(12); 2942–50. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. CT095-CT095
    Abstract: The goal of this current study was to clinically test the hypothesis that by targeting TRAIL-R2, myeloid-derived suppressor cells (MDSCs) can be selectively eliminated. MDSC) are one of the major contributors to immune suppression in cancer. We previously demonstrated in a preclinical study that MDSCs are sensitive to a TRAIL receptor 2 (TRAIL-R2) agonist. The TRAIL-R2 agonistic antibody (DS-8273a; provided by Daiichi Sankyo, Inc.) was tested in 16 patients with advanced solid cancers or lymphomas enrolled in a phase 1 trial. The antibody (24 mg/kg) was administered IV once every 3 weeks till disease progression, unacceptable toxicities, or withdrawal of consent. The safety and the presence of various populations of myeloid and lymphoid cells in peripheral blood and tumor tissues were evaluated using flow cytometry and immunohistochemistry. Overall, the treatment was well tolerated with only mild to moderate adverse events attributable to the study drug. Furthermore, treatment with DS-8273a resulted in reduction of the elevated numbers of MDSC in the peripheral blood of most patients to the levels observed in healthy volunteers. However, in several patients, MDSC rebounded back to the pre-treatment level by day 42. In contrast, DS-8273a did not affect the number of neutrophils, monocytes, and other populations of myeloid and lymphoid cells with decreases in MDSC levels inversely correlating with the length of progression-free survival. In tumors, DS-8273a treatment resulted in a decrease of MDSC in 50% of the patients who were able to provide pre- and on-treatment biopsies. In conclusion, targeting TRAIL-R2 using DS-8273a resulted in a temporary elimination of MDSCs without affecting mature myeloid or lymphoid cells, and these data support further use of this antibody in combination with current immmunotherapies of cancer. Citation Format: George A. Dominguez, Thomas Condamine, Sridevi Mony, Ayumi Hashimoto, Fang Wang, Qin Liu, Andres Forero, Johanna C. Bendell, Robert Witt, Neil Hockstein, Prasanna Kumar, Dmitry I. Gabrilovich. The selective targeting of myeloid-derived suppressor cells in cancer patients using an agonistic TRAIL-R2 antibody [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr CT095. doi:10.1158/1538-7445.AM2017-CT095
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 15 ( 2016-08-01), p. 4418-4429
    Abstract: Non–small cell lung cancers (NSCLC) marked by EGFR mutations tend to develop resistance to therapeutic EGFR inhibitors, often due to secondary mutation EGFRT790M but also other mechanisms. Here we report support for a rationale to target IKBKE, an IκB kinase family member that activates the AKT and NF-κB pathways, as one strategy to address NSCLC resistant to EGFR inhibitors. While wild-type and mutant EGFR directly interacted with IKBKE, only mutant EGFR phosphorylated IKBKE on residues Y153 and Y179. The unphosphorylatable mutant IKBKE-Y153F/Y179-F that lost kinase activity failed to activate AKT and inhibited EGFR signaling. In clinical specimens of NSCLC with activating mutations of EGFR, we observed elevated levels of phospho-Y153 IKBKE. IKBKE ablation with shRNA or small-molecule inhibitor amlexanox selectively inhibited the viability of NSCLC cells with EGFR mutations in vitro. In parallel, we found that these treatments activated the MAPK pathway due to attenuation of an IKBKE feedback mechanism. In vivo studies revealed that combining amlexanox with MEK inhibitor AZD6244 significantly inhibited the xenograft tumor growth of NSCLC cells harboring activating EGFR mutations, including EGFRT790M. Overall, our findings define IKBKE as a direct effector target of EGFR and provide a therapeutic rationale to target IKBKE as a strategy to eradicate EGFR-TKI–resistant NSCLC cells. Cancer Res; 76(15); 4418–29. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...