GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 1 ( 2018), p. 013401-
    Abstract: In order to clearly understand the physical images of incident ions passing through the insulating nanocapillary, in this work we establish a theoretical model, in which the matlab program is combined with the Monte Carlo method, to estimate the time evolution of transmission features, such as the angular and deposited charge distribution, three-dimensional (3D) trajectories of H+ particles with proton incident energies of 10 keV, 100 keV and 1 MeV at -1 title angle. The simulation results show that the transmission mechanism of 100 keV protons is different from those of 10 keV and 1 MeV protons. After a sufficiently charging and discharging stage, 10 keV H+ particles are guided along the direction of capillary axis, indicating that the guiding force from the surface charge patches is significant, and the small-angle scattering of 1 MeV protons under the capillary inner wall is a physical process that determines the transport of H+ particles through the nanocapillary. However, for 100 keV H+ particles, the centroid angle gradually shifts from the guiding direction to the direction close to the incident beam, which is attributed to the fact that the stochastic inelastic binary collision below the surface is the main transmission mechanism at the beginning. After the charging and discharging reach an equilibrium state, the H+ particles are likely to pass through the nanocapillary, and the main transmission mechanism is the charge-patch-assisted specular scattering. This mechanism deepens the understanding of the transport behavior of protons through the nanocapillary, which will contribute to the control and application of the 100 keV proton beam.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 17 ( 2018), p. 176102-
    Abstract: Nanocapillaries in various materials have received considerable attention due to the rapid growth of the nanotechnology.Recent studies have focused on the transmission of ions through the nanocapillary.The pioneer work,the transmission of 3-keV Ne7+ through polyethylene terephthalate nanocapillaries based on guiding effect has been reported by Stolterfoht et al.(2002 Phys.Rev.Lett.88 133201),indicating that the selforganized charge patches on the capillary walls,which inhibits close contact between the ions and the inner capillary walls,deflecting the trajectories of ions,and thus the ions transmit along the direction of the capillary axis.For the high-energy region (E/Q 〉 1 MV),Hasegawa et al.(2011 J.Appl.Phys.110 044913) measured the outgoing angle and energy distribution of 2 MeV H+ ions transmitted through a tapered glass capillary.The results indicated that the main transport mechanism of the MeV ions in a tapered glass capillary is the multiple random inelastic collisions below the surface.In the medium-energy region (E/Q from dozens of kV to hundreds of kV),Zhou et al.(2016 Acta Phys.Sin.65 103401) measured the transmission features of the 100-keV protons transmitted through a polycarbonate (PC) membrane at a tilt angle of+1°,the transmitted particles were located around the direction along the incident beam,not along the capillary axis,the transport mechanism of the 100-keV protons in the nanocapillary is the charge-patch-assisted collective scatterings on the surface.With the nanocapillary membranes at different tilt angles,the transverse momentum of the incident ions are different.What is the transmission mechanism of the ions in nanocapillary membranes at different tilt angels? In the present study,we measure the time evolution of the angular distribution,charge state distribution and relatively transmission rate of 30-keV He2+ ions with 500 pA transmitting through a polycarbonate nanocapillary membrane at different incident angles (-0.5°,-1°,-1.5°,-2.5°).It is found that for the small tilt angles (-0.5°,-1°,-1.5°) the transmitted He2+ ions are located around the direction of incident beam,not along the capillary axis,and the directions of the transmitted H0 atoms change from the direction of capillary axis to the direction of incident beam gradually,during the experimental period,the charge exchange is observed.The charge patches in the capillaries overcome the transverse momentum of the incident ions,the ions are transmitted by specular scatterings on the inner surface of capillary,and the main transport mechanism of ions in the nanocapillary at the small tilt angles is the charge-patch-assisted collective scatterings on the surface.For a large tilt angle (-2.5°),the transmitted He2+ ions are located in the direction of the incident beam,and He0 atoms are always in the direction of capillary axis,the charge patches cannot overcome the transverse momentum of the incident ions,and the main transport mechanism of ions in the nanocapillary at the large tilt angles is the multiple random inelastic collisions below the surface.This finding increases the knowledge of charged ions through nanocapillary at different tilt angles within dozens of keV energies in many scientific fields.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2016
    In:  Acta Physica Sinica Vol. 65, No. 19 ( 2016), p. 194201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 19 ( 2016), p. 194201-
    Abstract: In recent years,sparse representation theory has acquired considerable progress and has extensively been used in visual tracking.Most trackers used the sparse coefficients to merely calculate the position of the target according to the reconstruction error relative to sparse coefficients,and often neglected the information contained by representation residual matrix in representing step.Consequently,we present a novel sparse representation based tracker which takes representation residual matrix into consideration.First of all,at initialization of a new frame,we reconstruct the frame by singular value decomposition (SVD) to eliminate noise and useless information,which contributes a friendly frame for the following representation step.To obtain the compact representation of the target,we build L2-norm regularization according to the distance between the candidates wrapped in particle framework and the reconstruction calculated by dictionary templates and residual matrix.Additionally,we use the L1-norm constraint to restrict the sparse coefficients and the residual matrix of each candidate.Secondly,as the built optimization problem does not have closed-form solution,we design a method to compute the coefficients and the residual matrix iteratively.During each iteration,the coefficients are obtained by solving classical least absolute shrinkage and selectionator operator (LASSO) model,and the residual matrix is achieved by shrinkage operation.After solving the optimization problem,we compute the score of each candidate for evaluating the truth target with considering coefficients and residual matrix.The score is formulated as weighted reconstruction error which consists of dictionary templates,candidates,coefficients and residual matrix. The weight is the exponential value of absolute value of elements in residual matrix.Finally,for capturing the varying appearance of target in series,we update the dictionary template with assembled template,which is composed of residual matrix,selected candidate and dictionary template.In this paper,the template to be replaced is determined according to the score which is inversely proportional to the distance between the selected candidate and each dictionary template. Then we update the dictionary frame by frame during tracking process.Contributions of this work are threefold:1) the representation model captures holistic and local features of target and makes the tracker robust to varying illumination, shape transformation,and background clutter,profiting from preprocessing of SVD reconstruction,the model exhibits a more compact representation of target without disturbance of noisy variance;2) we employ a weight matrix to adjust reconstruction error in candidate evaluation step,as described above,the weight matrix strengthens the effect of error in residual matrix for evaluating candidates from which target is selected,it is noted that weights are all greater than one,which leads to reconstruction error expanding according to the error value of residual matrix,and keeps pixels where there is small error value believable for evaluation;and 3) we adopt an assembled template to update dictionary template and reconstruction of coefficients of selected candidate,which alleviates dictionary degradation and tracking drift problems and provides an accurate description of new appearance of target.In order to illustrate the performance of the proposed tracker,we enforce the algorithm on several challenging sequences and compare the proposed algorithm with five state-of-art methods,whose codes are all supplied by the authors.For complete illustration,both qualitative evaluation and quantitative evaluation are presented in experiment section.Through the experimental results,we could conclude that the proposed algorithm has a more favorable and robust performance than other state-of-art algorithms when dealing with kinds of situations during tracking.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 17 ( 2018), p. 175201-
    Abstract: Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2016
    In:  Acta Physica Sinica Vol. 65, No. 10 ( 2016), p. 107301-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 10 ( 2016), p. 107301-
    Abstract: Perovskite oxide heterostructure possesses attractive magnetic, optical and electric properties, such as superconducting interface between two insulators, two-dimensional electron gas, positive giant magnetoresistance, photoelectric response characteristic, magnetocaloric effect, and coexistent different magnetic structures. Especially for the photoelectric response behaviors of A1-xAxMnO3 (A=La, Pr etc.; A = Sr, Ca etc.) perovskite manganese oxide heterostructure, one has made a systematic study on the photoelectric conversion efficiency, the photovoltaic response speed, and the in-plane lateral photovoltage. Besides A1-xAxMnO3 structure, manganese oxides can also exhibit the double layered perovskite structure A2-2xA1+2xMn2O7. Double layered perovskite structure can be regarded as the layers of perovskite and rock salt which are alternately stacked. This double layered perovskite manganese oxide (such as La2-2xSr1+2xMn2O7) is a natural structure of the tunnel structure: ferromagnetic metal layer-insulating layer-ferromagnetic metal layer. Double layered perovskite manganese oxide has not only the characteristics of giant magnetoresistance, but also the novel physical properties, such as persistent photoconductivity, etc. However, there are few reports on the physical properties of the double layered perovskite manganite oxides, heterostructures, especially the photovoltaic properties. In this work, the La1.3Sr1.7Mn2O7 (LSMO) film is deposited on an n-type SrTiO3-Nb (NSTO) single crystal substrate by a pulsed laser deposition method. Additionally, we study the transporting properties of LSMO/NSTO heterostructure and its photovoltaic effect. The heterostructure exhibits benign rectifying and palpable photovoltaic effect. Under the 532 nm laser irradiation, the photovoltage first increases and then decreases with temperature rising. The maximal photovoltage reaches 400 mV at 150 K which is consistent with the metal-insulator transition temperature of LSMO film. It is indicated that the photovoltaic effect of the heterostructure is regulated by the inner transporting characteristics of LSMO film. The dynamical process of the heterostructure, photovoltaic response, is analyzed. Meanwhile, by analyzing the relationship between the photovoltage and time, it is found that the rising edge fits to the first order exponential function, which is related to the migration of carriers. While the falling edge of second-order exponential function indicates that the compound of carriers has two different physical processes: 1 corresponds to the neutralization process of the carriers aggregated on both junction sides through the external circuit, and 2 corresponds to the annihilation process of non-equilibrium carriers. The carrier lifetime of our p-n junction is longer, on the order of ms, than those of other manganese oxides p-n junctions. Remarkably, the time constants of both the rising edge and falling edge first increase and then decrease as temperature increases, and the maximum values occur at the metal-insulator transition temperature of LSMO film.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 13 ( 2015), p. 130601-
    Abstract: The optical lattice clock with neutral atoms occupies an outstanding position in the research field of atomic clocks, demonstrating the great potential of its performance (like the uncertainty and the stability). At present, the optical lattice clock has realized a 10-18 level of its uncertainty. In this paper, we present the realization of loading bosonic atoms 88Sr (strontium, alkaline-earth metals) into a one-dimensional (1D) optical lattice in our laboratory. The optical lattice where the atoms are trapped can make the energy level shift, called Stark shift. But there is the special optical lattice operating at the “magic” wavelength for clock transitions (5s2) 1S0-(5s5p) 3P0, which can make the same Stark light-shift for both of them, indicating a zero light-shift relative to the clock. In our experiment, Sr atoms are cooled in a two-stage cooling and its temperature can be as low as 2 μK. Then these cold atoms are confined in the Lamb-Dicke region by the lattice laser output from an amplified diode laser operating at the “magic” wavelength, 813 nm. Experimentally, it is straightforward to provide 850 mW of lattice power focused to a 38 μm beam radius. After the cold atoms have trapped in the optical lattice, the lifetime of atoms in 1D optical lattice is measured to be 270 ms. The temperature and the number are about 3.5 μK and 1.2×105 respectively. Besides, effects of the power of the lattice laser on both the number and temperature are analyzed. The number changes linearly with the laser power, while there is no obvious influence on the temperature by the power. This original and special approach for atoms trapped in the optical lattice can provide a long interrogation time for probing the clock transition. Furthermore, it may be the foundation for developing our optical lattice clock of strontium atoms.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 19 ( 2015), p. 198702-
    Abstract: Expression for the formation of the pixel value of fast neutron radiography has been derived. The contrast inequality for the photograph has been established using the derived expression; then the relationships of the image contrast with the source intensity, the exposure time, and the scattering have therefore been obtained through the acquired inequality. A simulation on the process of fast neutron radiography is carried out based on the pixel value analysis, and the spatial resolution and image contrast have also been considered. Simulation results show that the spatial resolution is better than that from experiments and the effect of image contrast is equivalent to that of the experiments. Finally, various samples, such as Pb samples, with slits, Fe samples with square holes and multiple materials-combined samples, are used to test the performance of the simulation. Results demonstrate that the simulations are in agreement with the experiments, thus providing a reference to the future experimental design and engineering application.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 7 ( 2015), p. 075202-
    Abstract: Extreme ultraviolet lithography (EUVL), which uses the extreme ultraviolet radiation at a wavelength of 13.5 nm, is the leading candidate of next generation lithography addressing not only the 10 nm half-pitch nodes, but several nodes beyond that. Among all the methods for getting EUV radiation, laser-produced plasma (LPP) light source is the most promising EUV light source because of its high conversion efficiency (CE), large collect angle and low debris output. In this paper, pulsed TEA-CO2 laser and Nd:YAG laser are used to irradiate tin droplets to obtain plasma EUV emission, and the properties of EUV radiation from the plasma are studied. Results show that the EUV emission spectra induced by Nd:YAG laser have an obvious blueshift as compared with those by CO2 laser. In addition, the LPP sources are point light sources, so that the angular distribution of EUV emission from LPP can be described by Lambertian distribution.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...