GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (9). pp. 4246-4255.
    Publication Date: 2020-02-06
    Description: While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2404-2417.
    Publication Date: 2022-01-31
    Description: The interaction between the atmosphere, specifically the North Atlantic Oscillation (NAO), and the North Atlantic ocean circulation on sub‐decadal timescale is analyzed in a subset of models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). From preindustrial control runs of at least 500 years length, we derive anomaly patterns in the atmospheric and ocean circulation and of air‐sea heat exchange. All models simulate a distinct dipolar oceanic overturning anomaly at the sub‐decadal timescale, with centers at 30° N and 55° N. The dipolar overturning anomaly goes along with marked anomalies in the North Atlantic sea surface temperature and gyre circulation. Lag‐regression analyses demonstrate, with relatively small ensemble spread, how the atmosphere and the ocean circulation interact. The dipolar anomalies in the overturning are forced by NAO‐related wind stress curl anomalies. Anomalous surface heat fluxes in concert with anomalous vertical motions drive a meridional dipolar heat content anomaly in the upper ocean, and it is this dipolar heat content anomaly which carries the coupled system from one phase of the sub‐decadal cycle to the other by reversing the tendencies in the overturning circulation. The coupled sub‐decadal variability derived from the CMIP5 models is characterized by three elements: a wind‐driven part steering the dipolar overturning anomaly, surface heat flux anomalies that support a heat build‐up in the subpolar gyre region, and the heat storage memory which is instrumental in the phase reversal of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...