GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 161-976; Abies; Abrupt Climate Changes and Environmental Responses; Accumulation model; Acer; ACER; Alboran Sea; Alisma; Alnus; Ambrosia; Apiaceae; Arceuthobium; Arecaceae; Argania; Aristolochia; Armeria; Artemisia; Asphodelus; Asteraceae; Betula; Brassicaceae; Butomus; Buxus; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; Calligonum; Calluna; Calystegia; Campanulaceae; Canna; Carduus; Carpinus; Caryophyllaceae; Castanea; Cedrus; Centaurea; Centranthus; Ceratonia; Chenopodiaceae; Cistus; Cistus ladanifer; Classical age-modeling approach, CLAM (Blaauw, 2010); COMPCORE; Composite Core; Convolvulus; Corylus; Counting, palynology; Crassulaceae; Cupressaceae; Cuscuta; Cyperaceae; DEPTH, sediment/rock; Dipsacaceae; Ephedra; Ephedra distachya; Ephedra fragilis; Ericaceae; Erodium; Euphorbia; Euphorbiaceae; Euphrasia; Fabaceae; Fagus; Fraxinus; Galium; Gentianaceae; Geranium; Halimum; Hedera; Helianthemum; Heliotropium; Helleborus; Hippophae; Hypericum; Ilex; Impatiens; Isoetes; Jasminum; Joides Resolution; Juglans; Knautia; Lamiaceae; Leg161; Ligustrum; Liliaceae; Liliopsida; Limonium; Linum; Lonicera; Lygeum; Lythrum; Malvaceae; Matthiola; Mercurialis; Myriophyllum; Odontites; Olea; Papaveraceae; Paronichia; Phillyrea; Phlomis; Picea; Pistacia; Plantago; Platanus; Plumbaginaceae; Poaceae; Polygonum; Populus; Potamogeton; Potentilla; Primulaceae; Pteridophyta; Quercus; Quercus ilex-type; Quercus suber-type; Ranunculaceae; Reseda; Rhamnus; Rhus; Rosaceae; Rosmarinus; Rumex; Ruppia; Ruta; Salix; Sambucus; Sample ID; Sapotaceae; Scabiosa; Scilla; Scrophulariaceae; Solanaceae; Spergularia; Stachys; Sterculia; Syringa; Taxaceae; Thalictrum; Thymelaeaceae; Tuberaria; Type of age model; Typha; Ulmus; Urtica; Urticaceae; Valerianaceae; Verbena; Vicia; Viola; Vitis; Xanthium; Ziziphus  (1)
  • AGE; CALYPSO; Calypso Corer; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoms; Diatoms, pelagic; Marion Dufresne (1995); MD02-2588; MD02-2588Q; MD128; Southern Ocean; SWAF  (1)
  • Center for Marine Environmental Sciences; GeoB; Geosciences, University of Bremen; MARUM  (1)
  • 2015-2019  (3)
  • 1980-1984
Document type
Keywords
Publisher
Years
  • 2015-2019  (3)
  • 1980-1984
Year
  • 1
    Publication Date: 2023-03-25
    Keywords: AGE; CALYPSO; Calypso Corer; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Diatoms; Diatoms, pelagic; Marion Dufresne (1995); MD02-2588; MD02-2588Q; MD128; Southern Ocean; SWAF
    Type: Dataset
    Format: text/tab-separated-values, 278 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jonkers, Lukas; Zahn, Rainer; Thomas, Alexander; Henderson, Gideon M; Abouchami, Wafa; Francois, Roger; Masqué, Pere; Hall, Ian R; Bickert, Torsten (2015): Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic d13C record. Earth and Planetary Science Letters, 419, 14-21, https://doi.org/10.1016/j.epsl.2015.03.004
    Publication Date: 2023-07-05
    Description: Previous work showed that South Atlantic sediments have lower glacial than Holocene 231Pa/230Th, which was attributed to a switch in the flow direction of Atlantic deep-water. Debate exists, however as to the degree to which two processes - circulation and scavenging - determine sedimentary 231Pa/230Th, making this interpretation contentious. Here we address this issue using 145-kyr records of paleocirculation proxies. Benthic foraminiferal d13C, neodymium isotopes (ENd) and sedimentary 231Pa/230Th were all measured in a single sediment core from the South Atlantic subtropical gyre. This site largely excludes the influence of local productivity changes on 231Pa/230Th records. Measured 231Pa/230Th ranges between ~0.041 during glacials to ~0.055 during interglacial periods and are consistently lower than the production ratio, indicating export of 231Pa from the central South Atlantic for the entire duration of the record. The lower glacial 231Pa/230Th is regionally consistent, suggesting that basin-scale oceanographic processes cause the decrease. In turn, less radiogenic ENd and lower benthic d13C confirm the classical picture of an increase in Southern Component Water (SCW) influence in the Atlantic during glacial periods and point to a circulation control on the observed 231Pa/230Th decrease rather than a local productivity change. We suggest that associated with this change in water mass distribution the dominant sink for 231Pa shifted from the margins of the South Atlantic and/or the Southern Ocean during interglacials, to the North Atlantic during glacial periods. Indeed, elevated 231Pa/230Th in the deep North Atlantic during glacials supports this mechanism of northward transport of 231Pa by SCW.
    Keywords: Center for Marine Environmental Sciences; GeoB; Geosciences, University of Bremen; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-27
    Keywords: 161-976; Abies; Abrupt Climate Changes and Environmental Responses; Accumulation model; Acer; ACER; Alboran Sea; Alisma; Alnus; Ambrosia; Apiaceae; Arceuthobium; Arecaceae; Argania; Aristolochia; Armeria; Artemisia; Asphodelus; Asteraceae; Betula; Brassicaceae; Butomus; Buxus; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; Calligonum; Calluna; Calystegia; Campanulaceae; Canna; Carduus; Carpinus; Caryophyllaceae; Castanea; Cedrus; Centaurea; Centranthus; Ceratonia; Chenopodiaceae; Cistus; Cistus ladanifer; Classical age-modeling approach, CLAM (Blaauw, 2010); COMPCORE; Composite Core; Convolvulus; Corylus; Counting, palynology; Crassulaceae; Cupressaceae; Cuscuta; Cyperaceae; DEPTH, sediment/rock; Dipsacaceae; Ephedra; Ephedra distachya; Ephedra fragilis; Ericaceae; Erodium; Euphorbia; Euphorbiaceae; Euphrasia; Fabaceae; Fagus; Fraxinus; Galium; Gentianaceae; Geranium; Halimum; Hedera; Helianthemum; Heliotropium; Helleborus; Hippophae; Hypericum; Ilex; Impatiens; Isoetes; Jasminum; Joides Resolution; Juglans; Knautia; Lamiaceae; Leg161; Ligustrum; Liliaceae; Liliopsida; Limonium; Linum; Lonicera; Lygeum; Lythrum; Malvaceae; Matthiola; Mercurialis; Myriophyllum; Odontites; Olea; Papaveraceae; Paronichia; Phillyrea; Phlomis; Picea; Pistacia; Plantago; Platanus; Plumbaginaceae; Poaceae; Polygonum; Populus; Potamogeton; Potentilla; Primulaceae; Pteridophyta; Quercus; Quercus ilex-type; Quercus suber-type; Ranunculaceae; Reseda; Rhamnus; Rhus; Rosaceae; Rosmarinus; Rumex; Ruppia; Ruta; Salix; Sambucus; Sample ID; Sapotaceae; Scabiosa; Scilla; Scrophulariaceae; Solanaceae; Spergularia; Stachys; Sterculia; Syringa; Taxaceae; Thalictrum; Thymelaeaceae; Tuberaria; Type of age model; Typha; Ulmus; Urtica; Urticaceae; Valerianaceae; Verbena; Vicia; Viola; Vitis; Xanthium; Ziziphus
    Type: Dataset
    Format: text/tab-separated-values, 36814 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...