GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (6)
  • 2015-2019  (6)
  • 1985-1989
  • 1
    Publication Date: 2020-02-06
    Description: Identification of essential fish habitats (EFH), such as spawning habitats, is important for nature conservation, sustainable fisheries management and marine spatial planning. Two sympatric flounder (Platichthys flesus) ecotypes are present in the Baltic Sea, pelagic and demersal spawning flounder, both displaying ecological and physiological adaptations to the low-salinity environment of this young inland sea. In this study we have addressed three main research questions: 1) What environmental conditions characterize the spatial distribution and abundance of adult flounder during the spawning season? 2) What are the main factors defining the habitats of the two flounder ecotypes during the spawning season? 3) Where are the potential spawning areas of flounder? We modelled catch per unit of effort (CPUE) of flounder from gillnet surveys conducted over the southern and central Baltic Sea in the spring of 2014 and 2015 using generalized additive models. A general model included all the stations fished during the survey while two other models, one for the demersal and one for the pelagic spawning flounder, included only the stations where each flounder ecotype should dominate. The general model captured distinct ecotype-specific signals as it identified dual salinity and water depth responses. The model for the demersal spawning flounder revealed a negative relation with the abundance of round goby (Neogobius melanostomus) and a positive relation with Secchi depth and cod abundance. Vegetation and substrate did not play an important role in the choice of habitat for the demersal ecotype. The model for the pelagic spawning flounder showed a negative relation with temperature and bottom current and a positive relation with salinity. Spatial predictions of potential spawning areas of flounder showed a decrease in habitat availability for the pelagic spawning flounder over the last 20 years in the central part of the Baltic Sea, which may explain part of the observed changes in populations' biomass. We conclude that spatiotemporal modelling of habitat availability can improve our understanding of fish stock dynamics and may provide necessary biological knowledge for the development of marine spatial plans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Highlights: • Frequencies and pathways of deep cyclones forcing large volume changes (LVCs) and major Baltic inflows (MBIs) have been determined and analyzed. • Deep cyclones associated with LVCs and MBIs follow 4 main routes over the Baltic Sea area. • For the period 1950–2010, there is a positive trend of the number of deep cyclones associated with LVCs. Abstract: Large volume changes (LVCs) and major Baltic inflows (MBIs) are essential processes for the water exchange and renewal of the stagnant water in the Baltic Sea deep basins. These strong inflows are known to be forced by persistent westerly wind conditions. In this study, MBIs are considered as subset of LVCs transporting with the large water volume a big amount of highly saline and oxygenated water into the Baltic Sea. Since the early 1980s the frequency of MBIs has dropped drastically from 5 to 7 events to only one inflow per decade, and long lasting periods without MBIs became the usual state. Only in January 1993, 2003 and December 2014 MBIs occurred that were able to interrupt the stagnation periods in the deep basins of the Baltic Sea. However, in spite of the decreasing frequency of MBIs, there is no obvious decrease of LVCs. The Landsort sea level is known to reflect the mean sea level of the Baltic Sea very well, and hence LVCs have been calculated for the period 1887–2015 filtering daily time series of Landsort sea surface elevation anomalies. The cases with local minimum and maximum difference resulting in at least 60 km3 of water volume change excluding the volume change due to runoff have been chosen for a closer study (1948–2013) of characteristic pathways of deep cyclones. The average duration of LVCs is about 40 days. During this time, 5–6 deep cyclones move along characteristic storm tracks. Furthermore, MBIs are characterized by even higher cyclonic activity compared to average LVCs. We obtained four main routes of deep cyclones which were associated with LVCs, but also with the climatology. One is approaching from the west at about 56–60°N, passing the northern North Sea, northern Denmark, Sweden and the Island of Gotland. A second broad corridor of frequent cyclone pathways enters the study area north of Scotland between 60 and 66°N turning north-eastwards along the northern coast of Scandinavia. This branch bifurcates into smaller routes. One at about 62°N passing Oslo, southern Sweden and entering the central Baltic Sea, and another less frequent one at about 65°N, crossing Scandinavia south-eastwards passing the Sea of Bothnia and entering Finland. The conditions for LVCs to happen are temporal clustering of deep cyclones in certain trajectory corridors. We also found an increasing linear trend of the number of deep cyclones for the period 1950–2010.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Records of hard-bottom communities show regional differences in community dynamics. • Regionally, signs of regime shift were detected. • Shift can be explained by the decline of the foundation species Mytilus sp. • Modelling process revealed three environmental variables explaining the decline. • Regional differences in larval dispersal could explain contrary Mytilus recoveries. Abstract Ecological processes modulate ecosystem functioning and services. Foundation species are those exerting intense control on such processes as both their existence and loss have profound implications on the structure of ecological communities. For the distinction between random fluctuations and directional regime shifts in community composition, long-term records are of strategic need. In this study we present the monitoring of benthic hard-bottom communities over 11 years along seven stations in the SW Baltic Sea. Regional differences were found between the communities of Kiel and Lübeck bights, with the former area displaying signs of regime shift. The decline and near disappearance of the foundational species Mytilus edulis from settlement panels deployed in Kiel Bight correlated with three environmental variables: sea surface temperature, water current speed and chlorophyll a concentration. Thus, low spring temperatures, in some cases reinforced by local maxima of chlorophyll a, correlated with reduced recruitment of Mytilus. Moreover, regional differences of larval dispersal and population connectivity could explain the rapid recovery after disturbance of the mussel populations in Lübeck Bight in contrast to Kiel Bight. Our findings underscore the relevance of long-term monitoring programmes to detect the interactive impacts of global climatic and regional environmental drivers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Human-induced climate change such as ocean warming and acidification, threatens marine ecosystems and associated fisheries. In the Western Baltic cod stock socio-ecological links are particularly important, with many relying on cod for their livelihoods. A series of recent experiments revealed that cod populations are negatively affected by climate change, but an ecological-economic assessment of the combined effects, and advice on optimal adaptive management are still missing. For Western Baltic cod, the increase in larval mortality due to ocean acidification has experimentally been quantified. Time-series analysis allows calculating the temperature effect on recruitment. Here, we include both processes in a stock-recruitment relationship, which is part of an ecological-economic optimization model. The goal was to quantify the effects of climate change on the triple bottom line (ecological, economic, social) of the Western Baltic cod fishery. Ocean warming has an overall negative effect on cod recruitment in the Baltic. Optimal management would react by lowering fishing mortality with increasing temperature, to create a buffer against climate change impacts. The negative effects cannot be fully compensated, but even at 3 °C warming above the 2014 level, a reduced but viable fishery would be possible. However, when accounting for combined effects of ocean warming and acidification, even optimal fisheries management cannot adapt to changes beyond a warming of +1.5° above the current level. Our results highlight the need for multi-factorial climate change research, in order to provide the best available, most realistic, and precautionary advice for conservation of exploited species as well as their connected socio-economic systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-26
    Description: Highlights: • Model output indicates high connectivity between the eastern Baltic cod nursery grounds. • Variability of spatial juvenile distribution patterns affected by flow dynamics. • Trend of simulated occupied juvenile cod habitat have been declining over the last decades. • Condition of juveniles suggests density-dependence due to hypoxia-related decrease in suitable habitat. • Baltic cod recruitment indicator: habitat availability for juvenile settlement as a factor for recruitment. Abstract: In this study the drift of eastern Baltic cod larvae and juveniles spawned within the historical eastern Baltic cod spawning grounds was investigated by detailed drift model simulations for the years 1971–2010, to examine the spatio-temporal dynamics of environmental suitability in the nursery areas of juvenile cod settlement. The results of the long-term model scenario runs, where juvenile cod were treated as simulated passively drifting particles, enabled us to find strong indications for long-term variations of settlement and potentially the reproduction success of the historically important eastern Baltic cod nursery grounds. Only low proportions of juveniles hatched in the Arkona Basin and in the Gotland Basin were able to settle in their respective spawning ground. Ocean currents were either unfavorable for the juveniles to reach suitable habitats or transported the juveniles to nursery grounds of neighboring subdivisions. Juveniles which hatched in the Bornholm Basin were most widely dispersed and showed the highest settlement probability, while the second highest settlement probability and horizontal dispersal was observed for juveniles originating from the Gdansk Deep. In a long-term perspective, wind-driven transport of larvae/juveniles positively affected the settlement success predominately in the Bornholm Basin and in the Bay of Gdansk. The Bornholm Basin has the potential to contribute on average 54% and the Bay of Gdansk 11% to the production of juveniles in the Baltic Sea. Furthermore, transport of juveniles surviving to the age of settlement with origin in the Bornholm Basin contributed on average 13 and 11% to the total settlement in the Arkona Basin and in the Gdansk Deep, respectively. The time-series of the simulated occupied juvenile cod habitat in the Bornholm Basin and in the Gdansk Deep showed a similar declining trend as the Fulton’s K condition factor of demersal 1-group cod, which may confirm the importance of oxygen-dependent habitat availability and its effect on density dependence as a process relevant for recruitment success.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-26
    Description: Highlights: • Recruitment indicator: egg survival probability vs. “reproductive volume concept”. • Traditional sampling methodology unable to resolve spatial egg distributions. • Predominance of self-sustaining stock components and low connectivity. • Egg buoyancy and topographic features: limitation of cod egg transport. • Sedimentation as a new mortality source of eastern Baltic cod eggs. Abstract: In the highly variable environment of the Baltic Sea two genetically distinct cod stocks exist, one west of the island of Bornholm, which is referred to as the western stock, and one to the east of Bornholm, the eastern stock. A hydrodynamic model combined with a Lagrangian particle tracking technique was utilised to provide spatially and temporally resolved long-term information on environmentally-related (i) spawning habitat size, (ii) egg/yolk-sac larval survival, (iii) separation of causes of mortality, and (iv) connectivity between spawning areas of eastern Baltic cod. Simulations were performed to quantify processes generating heterogeneity in spatial distribution of cod eggs and yolk sac larvae up to the first-feeding stage. The spatial extent of cod eggs represented as virtual drifters is primarily determined by oxygen and salinity conditions at spawning, which define the habitat requirement to which cod’s physiology is suited for egg development. The highest habitat suitability occurred in the Bornholm Basin, followed by the Gdansk Deep, while relatively low habitat suitability was obtained for the Arkona and the Gotland Basin. During drift egg and yolk sac larval survival is to a large extent affected by sedimentation. Eggs initially released in the western spawning grounds (Arkona and Bornholm Basin) were more affected by sedimentation than those released in the eastern spawning grounds (Gdansk Deep and Gotland Basin). Highest relative survival of eastern Baltic cod eggs occurred in the Bornholm Basin, with a pronounced decrease towards the Gdansk Deep and the Gotland Basin. Relatively low survival rates in the Gdansk Deep and in the Gotland Basin were attributable to oxygen-dependent mortality. Low oxygen content had almost no impact on survival in the Arkona Basin. For all spawning areas temperature dependent mortality was only evident after severe winters. Egg buoyancy in relation to topographic features like bottom sills and strong bottom slopes could appear as a barrier for the transport of Baltic cod eggs and yolk sac larvae and could potentially limit the connectivity of Baltic cod early life stages between the different basins in the western and eastern Baltic Sea. The possibility of an eastward directed transport up to the first-feeding larval stage exists only for eggs and yolk sac larvae at high buoyancy levels, suggesting that dispersal of early life stages between these spawning areas is limited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...