GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyta; Chromista; CO2 vent; Coast and continental shelf; Distance; Field experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Identification; Location; Macroalgae; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Oxygen; Oxygen, standard error; Padina australis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Primary production/Photosynthesis; Registration number of species; Replicate; Run Date/Time; Salinity; Single species; Site; South Pacific; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Beggiatoa mat  (1)
  • 2015-2019  (2)
  • 1990-1994
Document type
Keywords
Publisher
Years
  • 2015-2019  (2)
  • 1990-1994
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hofmann, Laurie C; Fink, Artur; Bischof, Kai; de Beer, Dirk (2015): Microsensor studies on Padina from a natural CO2 seep: implications of morphology on acclimation to low pH. Journal of Phycology, 51(6), 1106-1115, https://doi.org/10.1111/jpy.12347
    Publication Date: 2024-03-15
    Description: Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi-cation via photosynthesis-induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME-pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4-7.5), suggesting a greater dependence on membrane-bound CA for the dehydration of HCO3- ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyta; Chromista; CO2 vent; Coast and continental shelf; Distance; Field experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Identification; Location; Macroalgae; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Oxygen; Oxygen, standard error; Padina australis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Primary production/Photosynthesis; Registration number of species; Replicate; Run Date/Time; Salinity; Single species; Site; South Pacific; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 40403 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 75, doi:10.3389/fmicb.2016.00075.
    Description: The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.
    Description: AT acknowledges a W. Reynolds research leave from UNC, Guaymas-relevant support from the Center for Dark Energy Biosphere Investigations (C-DEBI) at the University of Southern California
    Keywords: Guaymas basin ; Hydrothermal circulation ; Hydrothermal sediment ; Beggiatoa mat ; In situ profiles ; Heatflow ; Porewater chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...