GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acrylonitrile butadiene; Arctic Ocean; ARK-XXIX/1, TRANSSIZ; ARK-XXIX/3; ARK-XXVIII/2; Campaign; Carbon, organic, particulate; Carbon/Nitrogen ratio; Cellulose acetate; Chlorinated polyethylene; Chlorophyll a; Cruise/expedition; Date/Time of event; DEPTH, ice/snow; Ethylene-vinyl acetate; Event label; ICE; Ice station; Ice type; Identification; Latitude of event; Longitude of event; Nitrile rubber; Nitrogen, organic, particulate; North Greenland Sea; Particle concentration; Particle concentration, error; Percentage; Polarstern; Polyamide; Polycaprolactone; Polycarbonate; Polyester; Polyethylene; Polyimide; Polylactic acid; Polypropylene; Polystyrene; Polyvinyl chloride; Project; PS85; PS85/426-3; PS85/472-2; PS92; PS92/032-4; PS92/039-6; PS94; PS94/054-1; Rubber; Sea ice salinity; Station label; Temperature, ice/snow; Varnish  (1)
  • 2015-2019  (1)
  • 1995-1999
Document type
Keywords
Publisher
Years
  • 2015-2019  (1)
  • 1995-1999
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Guetermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar (2018): Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03825-5
    Publication Date: 2023-01-13
    Description: Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.
    Keywords: Acrylonitrile butadiene; Arctic Ocean; ARK-XXIX/1, TRANSSIZ; ARK-XXIX/3; ARK-XXVIII/2; Campaign; Carbon, organic, particulate; Carbon/Nitrogen ratio; Cellulose acetate; Chlorinated polyethylene; Chlorophyll a; Cruise/expedition; Date/Time of event; DEPTH, ice/snow; Ethylene-vinyl acetate; Event label; ICE; Ice station; Ice type; Identification; Latitude of event; Longitude of event; Nitrile rubber; Nitrogen, organic, particulate; North Greenland Sea; Particle concentration; Particle concentration, error; Percentage; Polarstern; Polyamide; Polycaprolactone; Polycarbonate; Polyester; Polyethylene; Polyimide; Polylactic acid; Polypropylene; Polystyrene; Polyvinyl chloride; Project; PS85; PS85/426-3; PS85/472-2; PS92; PS92/032-4; PS92/039-6; PS94; PS94/054-1; Rubber; Sea ice salinity; Station label; Temperature, ice/snow; Varnish
    Type: Dataset
    Format: text/tab-separated-values, 2758 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...