GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Oceanography Society
    In:  Oceanography, 31 (4). pp. 180-181.
    Publication Date: 2021-02-08
    Description: The first German paper on oceanography was published in Kiel in 1697 (Kortum, 1994) at the beginning of the country’s long history in ocean science. Following successful development during the nineteenth and early twentieth centuries, culminating in the Atlantic Ocean Expedition of the first research vessel Meteor from 1925 to 1927 (Spiess, 1928), marine sciences almost disappeared from the defeated nation at the end of World War II. Because the country was mostly landlocked, it was not obvious to occupation authorities and German politicians that the country should again develop a strong marine science capacity. Nevertheless, the restart began, mostly at Kiel University and at the newly founded German Hydrographic Office in Hamburg.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 42 (11-12). pp. 1933-1950.
    Publication Date: 2018-03-08
    Description: Recent measurements indicate the transatlantic extent of the Namib Col Current at depths of 1300-3000 m near Lat. 22 degrees S in the South Atlantic Ocean. This current forms a continuous circulation structure from the Namib Col on the Walvis Ridge to the western trough, though its characteristic change as deepwater with varying properties enters and leaves the current owing to a meridional flow component. Transport estimates from hydrographic sections on the Walvis Ridge and at 15 degrees W near the crest of the Mid-Atlantic Ridge indicate a strength of about 3 x 10(6) m(3) s(-1) The current is part of a larger-scale eastward Row at Lon. 25 degrees W; transport estimates across the salinity maximum core there show a similar strength. Associated with this high-salinity high-oxygen current is a basin-wide front in these properties of varying intensity (weaker in the east) marking the transition to deep water whose North Atlantic characteristics have been partly erased by mixing with Circumpolar Deep Water in the southwest South Atlantic. The water which finally crosses the Walvis Ridge is supplied both by the eastward flow of this (diluted) North Atlantic Deep Water and by a general southeastward interior flow from the northern Angola Basin. Evidence suggests that this deep water continues south in the eastern Cape Basin, leaving the South Atlantic near the African continent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C2). pp. 2485-2493.
    Publication Date: 2017-10-04
    Description: Three data types are compared in the low-current-velocity regime in the southeastern North Atlantic, between 12-degrees-N and 30-degrees-N, 29-degrees-W and 18-degrees-W: Geosat altimetric sea level and derived surface geostrophic velocities, shallow current meter velocities, and dynamic heights derived from hydrographic data from cruises 4, 6, and 9 of the research vessel Meteor. The four current meter daily time series, at depths around 200 m, were smoothed over 1 month; the altimetric geostrophic velocities were computed from sea surface slopes over 142 km every 17 days. The correlation coefficients between the current meter and altimetric geostrophic velocities range between 0.64 and 0.90 for the moorings near 29-degrees-N but between 0.32 and 0.71 for the two around 21-degrees-N; the associated rms discrepancies between the two measurement types range between 1.5 and 4.4 cm/s, which is 49% to 127% of the rms of the respective current meter time series. Dynamic heights relative to 1950 dbar for the months of November 1986 (d(M4)), November 1987 (d(M6)), and February 1989 (d(M9)) were computed from Meteor cruises 4, 6, and 9. Both dynamic heights and altimetric heights (h(M4), h(M6), h(M9)) were averaged over 1-degrees boxes for the duration of each cruise. Differences d(M4) - d(M6) and d(M9) - d(M6) were computed only at bins where at least one station from both cruises existed, Assuming that dynamic heights d in dynamic centimeters are equivalent to sea level h in centimeters, the standard deviation sigma of the differences ((h(M4) - h(M6)) - (d(M4) - d(M6))) and corresponding M9 - M6 values was 2.1 cm. This value (squared) is only 13% of the (5.8 cm)2 variance of the dynamic height differences and is indistinguishable from the 2.7- to 5.6-cm natural variability of sea level in the area expected between the times when the ship and the satellite sampled the ocean. The areally averaged discrepancy for M9 - M6 was only 0.7 cm, but the corresponding value for M4 - M6 was 5.2 cm. A systematic difference between the water vapor corrections used before and after July 1987 is responsible for the M4 - M6 difference. The average M4 - M6 discrepancy is only 0.1 cm using the Fleet Numerical Oceanography Center correction, with a standard deviation of 3.1 cm. In spite of the underlying differences in sampling and physics, including unknown barotropic components not included in our hydrographic dynamic heights, and in data errors, including water vapor, ionospheric, and orbital effects on the altimetry, consistent interannual changes of the mean sea level from the independently obtained altimetric and hydrographic data sets are obtained, and correlated seasonal changes in surface currents are observed with both altimetry and current meters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Sears Foundation of Marine Research
    In:  Journal of Marine Research, 53 (6). pp. 929-957.
    Publication Date: 2017-11-28
    Description: Two high-resolution hydrographic sections occupied during February, March 1989 in the western and eastern basins of the North Atlantic at 14.5N are combined to study the water mass structure and meridional mass and heat transports. Absolute velocities were determined using these data and an earlier section at 8N in a linear inverse analysis. Mass balance for several layers representing the main water masses in the region and a zero net divergence for the sum of geostrophic and Ekman transport between the two sections are assumed. Using the annual mean of Ekman transports (13.6 Sv, 14.5N), (15.2 Sv, 8N) based on the climatology by Isemer and Hasse (1985) the annual average fluxes for the sections at 8N and 14.5N have been calculated. For the annual mean the strength of the meridional overturning cell at 14.5N amounts to 15.9 Sv with an associated heat transport of 1.22 PW. A similar value can be obtained at 8N where the annual mean heat transport reaches 1.18 PW and the overturning cell measures 15 Sv. The total northward heat transport is strongly dominated by the wind-driven Ekman heat transport. 'In-situ' values of heat transport using the actual wind-driven transports for the respective months yield even higher estimates. Heat transport at 14.5N rises to 1.37 +/- 0.42 PW (February) and the maximum is now at the 8N section, 1.69 +/- 0.52 PW (May). Comparisons of our results with another tropical section at 11N occupied concurrently demonstrate the large variability in heat transport related to changes in the wind field. Due to extremely weak winds in the eastern Atlantic and a resulting low Ekman transport, the 'in-situ' value of heat transport through this section ranged between 0.30 +/- 0.18 PW and 0.59 +/- 0.18 PW depending on the value chosen for the Ekman transport. The lower of the two heat transport estimates results from calculations with the actual observed winds and the other using a monthly climatological mean. That even the computations with the climatological monthly mean give such a low heat transport points to additional changes in the baroclinic structures between 11N and 14.5N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 76 (1). pp. 5-11.
    Publication Date: 2019-01-21
    Description: Widespread and sustained in situ ocean measurements are essential to an improved understanding of the state of the ocean and its role in global change. Merchant marine vessels can play a major role in ocean monitoring, yet apart from routine weather observations and upper-ocean temperature measurements, they constitute a vastly underutilized resource due to lack of suitable instrumentation. Examples of ways in which vessels can assist include profiling techniques of physical properties, chemical sampling via automated water samplers, optical techniques to measure various biological parameters, and ground truth measurements for remote sensing from orbiting and geostationary satellites. Further, ships can act as relays between subsurface instrumentation and satellite communication services. To take advantage of the opportunities that the maritime industry can provide, two steps must be taken. The first is to initiate an instrumentation development program with emphasis on techniques optimized for highly automated use onboard ships at 15-20-kt speeds. The second is to forge partnerships or links between academic and government laboratories and the maritime industry for the institution and maintenance of such monitoring programs. No doubt significant resources will be required, but in the long run the improved ability to monitor the state of ocean in situ will make the effort more than worthwhile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 97 (C1). pp. 703-715.
    Publication Date: 2017-09-26
    Description: The Guinea Dome is a permanent, quasi-stationary feature on the eastern side of the thermal ridge extending zonally across the tropical North Atlantic. The dome is a part of the large-scale near-surface flow fields associated with the North Equatorial Current, the North Equatorial Countercurrent and the North Equatorial Undercurrent. In the present study, historical and recently obtained hydrographic data are combined to investigate the thermohaline structure and geostrophic flow field in the vicinity of the dome. It is shown that the Guinea Dome exists throughout the year both in subthermocline and thermocline layers, that it has a corresponding cyclonic geostrophic flow, and that seasonal changes occur with respect to its vertical structure, horizontal extent, and position. The observational results are then compared with simulations from a general circulation model of the tropical Atlantic. A seven-year simulation forced by observed monthly winds is run to compute a monthly climatology. The model adequately simulates the Guinea Dome with respect to its structure, flow field, and seasonal variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 113 (1-2). pp. 287-292.
    Publication Date: 2018-03-02
    Description: Dense Antarctic Bottom Water formed around the continent of Antarctica spreads northward in the Atlantic underneath North Atlantic Deep Water, gradually mixing and upwelling into it. This Antarctic Water forms a significant element of the meridional circulation in both directions: northward as bottom water and southward as deep water. It is important to determine the strength of each component to assess its role in ocean circulation. Such measurements are useful when made in constricted pathways because any flow is more clearly defined. A new set of fine-resolution hydrograhic measurements in the Hunter Channel of the South Atlantic Ocean has been obtained, which allow the geostrophic bottom flow there to be estimated for the first time. The northward flow through the Hunter Channel of water cooler than 2-degrees-C is thus estimated to be 0.7 X 10(6) m3 s-1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (8). pp. 1771-1787.
    Publication Date: 2018-04-05
    Description: The Cape Verde Frontal Zone separates the North and the South Atlantic Central Waters in the eastern North Atlantic. It also represents the boundary between the ventilated subtropical gyre and the quasi-stagnant shadow zone in the southeast. The thermohaline front is nearly compensated with respect to density, and density parameters RP, suggest the existence of double-diffusive processes. Datasets from three cruises to the region, approximately one year apart each, are used to determine the effects of double-diffusive diapycnal versus isopycnal mixing. For this purpose results from the usual temperature-salinity analysis assuming isopycnal mixing are compared to results from a multiparameter analysis where nutrient and oxygen data are also used. Significant diapycnal fluxes are found in the frontal zone between 200 and 300 m, with water mass contents being changed by more than 20% through diapycnal mixing. The associated buoyancy fluxes have a similar magnitude as surface fluxes in the area and thus represent an important contribution to the vertical balances of heat and salt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C2). pp. 2393-2406.
    Publication Date: 2017-09-26
    Description: An analysis is presented of geostrophic volume transport across a zonal line along 28-degrees-N in the eastern Atlantic. The data are from an array of five moorings with 200-km spacing carrying temperature sensors and one current meter each for 1 or 2 years. Transport changes in the main thermocline relative to a fixed depth level are obtained by the use of temperature-salinity relationships. The transport variability is simulated by two propagating waves with first-order baroclinic mode structure. Solutions exist with annual and semi-annual periods and zonal wavelengths of 100-200 km and 300 km, respectively. Assuming quasi-geostrophic dynamics and using results on the Reynolds stress, the dominating waves of annual and semi-annual period are found to propagate to the southwest, with 45-degrees-60-degrees and 25-degrees to the south off the westward direction, respectively. Wave solutions with a 90-day period and a zonal wavelength of about 300 km are interpreted as an effect of barotropic waves arising due to horizontal temperature inhomogeneity. The propagation is about +/-25-degrees off the westward direction. In general, good approximations are obtained with the propagating wave simulations in the western and central part of the array, while large differences occur between observation and simulation close to the Canary archipelago. Possible causes for these differences are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 96 (C12). pp. 22259-22271.
    Publication Date: 2017-09-26
    Description: Data from a large-scale moored array in the Iberian and Canary basins are used to determine the energies of barotropic and baroclinic M2 and S2 tides. An analysis of time-varying dynamical modes is performed. The results for barotropic modes confirm the global surface tide model results of Schwiderski (1980) for this region. The barotropic modes dominate in the deep basins, but increased baroclinic contributions are usually found over rough topography. At three locations near the continental slope in the southern Canary Basin the baroclinic modes dominate the barotropic mode. Results from an array of three moorings at the northern part of the Cape Verde Rise show an inverse behavior of barotropic and baroclinic energies, such that the baroclinic energy is steadily enhanced while the barotropic energy is reduced towards the continental margin. The increase in baroclinic energy is consistent with a generation of internal tides close to the shelf by surface tidal forcing over topography. Further evidence for this process is provided by the 2-week periodicity of the first-order baroclinic mode at the slope, corresponding to the spring-neap cycle of the barotropic tide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...