GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association for Cancer Research (AACR)  (2)
  • The American Physiological Society (APS)  (2)
  • 2015-2019  (4)
  • 2000-2004
  • 1
    Publication Date: 2016-04-21
    Description: Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-03
    Description: Purpose: Binding of colony-stimulating factor 1 (CSF1) ligand to the CSF1 receptor (CSF1R) regulates survival of tumor-associated macrophages, which generally promote an immunosuppressive tumor microenvironment. AMG 820 is an investigational, fully human CSF1R antibody that inhibits binding of the ligands CSF1 and IL34 and subsequent ligand-mediated receptor activation. This first-in-human phase I study evaluated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of AMG 820. Experimental Design: Adult patients with relapsed or refractory advanced solid tumors received intravenous AMG 820 0.5 mg/kg once weekly or 1.5 to 20 mg/kg every 2 weeks until disease progression, adverse event (AE), or consent withdrawal. Results: Twenty-five patients received ≥1 dose of AMG 820. AMG 820 was tolerated up to 20 mg/kg; the MTD was not reached. One dose-limiting toxicity was observed (20 mg/kg; nonreversible grade 3 deafness). Most patients (76%) had treatment-related AEs; the most common were periorbital edema (44%), increased aspartate aminotransferase (AST; 28%), fatigue (24%), nausea (16%), increased blood alkaline phosphatase (12%), and blurred vision (12%). No patients had serious or fatal treatment-related AEs; 28% had grade ≥3 treatment-related AEs. Grade 3 AST elevations resolved when treatment was withheld. AMG 820 showed linear pharmacokinetics, with minimal accumulation (〈2-fold) after repeated dosing. Pharmacodynamic increases in serum CSF1 concentrations and reduced numbers of skin macrophages were observed. Best response was stable disease in 8 patients (32%). Conclusions: AMG 820 was tolerated with manageable toxicities up to 20 mg/kg every 2 weeks. Pharmacodynamic response was demonstrated, and limited antitumor activity was observed. Clin Cancer Res; 23(19); 5703–10. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-16
    Description: Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-02
    Description: Triple-negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and women diagnosed with TNBC currently lack targeted treatment options. To identify novel targets for TNBC, we evaluated phosphatase expression in breast tumors and characterized their contributions to in vitro and in vivo growth of TNBC. Using Affymetrix microarray analysis of 102 breast cancers, we identified 146 phosphatases that were significantly differentially expressed in TNBC compared with estrogen receptor (ER)-positive tumors. Of these, 19 phosphatases were upregulated (0.66-fold; FDR = 0.05) in TNBC compared with ER-positive breast cancers. We knocked down 17 overexpressed phosphatases in four triple-negative and four ER-positive breast cancer lines using specific siRNAs and found that depletion of six of these phosphatases significantly reduced growth and anchorage-independent growth of TNBC cells to a greater extent than ER-positive cell lines. Further analysis of the phosphatase PTP4A3 (also known as PRL-3) demonstrated its requirement for G1–S cell-cycle progression in all breast cancer cells, but PTP4A3 regulated apoptosis selectively in TNBC cells. In addition, PTP4A3 inhibition reduced the growth of TNBC tumors in vivo. Moreover, in silico analysis revealed the PTP4A3 gene to be amplified in 29% of basal-like breast cancers, and high expression of PTP4A3 could serve as an independent prognostic indicator for worse overall survival. Collectively, these studies define the importance of phosphatase overexpression in TNBC and lay the foundation for the development of new targeted therapies directed against phosphatases or their respective signaling pathways for TNBC patients. Cancer Res; 76(7); 1942–53. ©2016 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...