GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (187)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-11-18
    Description: Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High‐resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well‐suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408–U1410 are highly complex with several hiatuses. Here, we built a two‐site composite and constructed a conservative age‐depth model to provide a reliable chronology for this rhythmic, highly resolved (〈1 kyr) sedimentary archive. Astronomical components (g‐terms and precession constant) are extracted from proxy time‐series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20‐Myr intervals, and our results therefore provide constraints on g‐term variability on shorter, million‐year timescales. We also report first evidence that the g〈sub〉4〈/sub〉–g〈sub〉3〈/sub〉 “grand eccentricity cycle” may have had a 1.2‐Myr period around 41 Ma, contrary to its 2.4‐Myr periodicity today. Our median precession constant estimate (51.28 ± 0.56″/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations.
    Description: Plain Language Summary: The traditional cyclostratigraphic approach is to align and correlate a geologic depth‐series with an astronomical solution. However, the chaotic nature of the Solar System prevents astronomers from precisely calculating planetary motions beyond 40–50 million years ago. This in turn limits the options for geologists to use the resulting oscillations in Earth's climate system as a metronome for determining geologic time. In this study, we reversed the cyclostratigraphic approach and used the highly rhythmical sedimentary deposits from Newfoundland Ridge (North Atlantic) to back‐calculate planetary motions at ∼41 million years ago. The superior quality of the Newfoundland Ridge geoarchive originates from the combination of relatively high sedimentation rates (∼4 cm/kyr) and the time‐continuous character of our two‐site composite record between 39.5 and 42.8 million years ago. In this work, we had to first overcome considerable challenges in reconstructing the timing of sediment deposition, which we did with highly resolved geochemical measurements from two sites. We then were able to extract information on the Earth's planetary motion and on the Earth‐Moon interactions. These astronomical reconstructions based on geological data can now be used by astronomers to describe the evolution of the solar system further back in time than was previously possible.
    Description: Key Points: A new precession‐based cyclostratigraphy for the middle Eocene intervals of IODP Sites U1408 and U1410. Variability in astronomical fundamental frequencies (g‐terms) on million‐year timescales is larger than previously assumed. Our precession constant estimate for 41 Ma (51.28 ± 0.56″/year) confirms earlier indicators of slower tidal dissipation in the Paleogene.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: University of California http://dx.doi.org/10.13039/100005595
    Description: Belgian American Educational Foundation http://dx.doi.org/10.13039/100001491
    Description: https://paloz.marum.de/AstroComputation/index.html
    Description: https://paloz.marum.de/confluence/display/ESPUBLIC/NAFF
    Keywords: ddc:551 ; North Atlantic ; Eocene ; cyclostratigraphy ; astrochronology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-02-08
    Description: Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: Previous scientific ocean drilling expeditions have revealed that sediments deposited in the Kerguelen Plateau region have the potential to provide an out-standing chronicle of regional and global climate changes. In particular, this area is an excellent location to monitor subantarctic and high-latitude climate dynamics and obtain far-field information documenting Antarctic climate history in a world warmer than today. Here we report first results from site survey RV Sonne cruise SO272 that sailed January 11 to March 4 2020 from Port Louis, Mauritius, to Cape Town, South Africa. During the cruise ~4000 km of high resolution seismic reflection data were recorded along 18 seismic profiles across the central and southern Kerguelen Plateau. At 11 stations sediment cores with recoveries of up to 10m were retrieved [GU1] to complement the seismic studies and provide ages of the outcropping sediment at the sea floor. Three gravity cores targeted the Labuan Basin recovering Plio-Pleistocene diatom ooze with drop stones and rhythmic changes in reflectance. Eight gravity cores targeted the Raggatt Basin with the main objective to penetrate through the upper undifferentiated layer of surface sediment and probe the below much older outcropping sediment. Carbonate rich sediments were successfully retrieved at three locations with microfossil assemblages of late Eocene age. X-ray fluorescence core scanning, benthic stable isotope and bio-stratigraphic data will be presented. Seismic and geological datasets will form the base for an IODP full proposal to drill a complete Miocene to Paleocene high latitude sediment package, build upon the #983-Pre IODP proposal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: The Kerguelen Plateau, southern Indian Ocean rises up 2000 m above the surrounding seafloor and hence forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and the Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flowpath of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-26
    Description: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
    Description: Published
    Description: 1383–1387
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: The Kerguelen Plateau, southern Indian Ocean rises up 2000 m above the surrounding seafloor and hence forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and the Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flow path of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-14
    Description: The Kerguelen Plateau, southern Indian Ocean, which rises up 2000 m above the surrounding seafloor, forms an obstacle for the flow of the Antarctic Circumpolar Current (ACC) and Antarctic Bottomwater (AABW). The ACC is strongly deviated in its flow towards the north. A branch of the AABW flows northwards along the eastern flank of the plateau and in its path is steered by several basement highs and William’s Ridge. Seismic data collected during RV Sonne cruise SO272 image sediment drifts shaped in the Labuan Basin, which document onset and variabilities in pathway and intensity of this AABW branch in relation to the development of the Antarctic ice sheet and tectonic processes, e.g., the opening of the Tasman gateway. The eastern flank of the Kerguelen further shows strong erosion of the post-mid Eocene sequences. In places, the Paleocene/early Eocene sequences are also affected by thinning and erosion. A moat can be observed along the Kerguelen Plateau flank indicating the flow path of the north setting AAWB branch. Sediment drifts and sediment waves are formed east of the moat. Similar features are observed at the inner, western flank of William’s Ridge thus outlining the recirculation of the AABW branch in the Labuan Basin. The chronological and spatial will be reconstructed via the analysis of those sedimentary structures to provide constraints on climate and ocean circulation variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-22
    Description: The major Cenozoic shift from a shallow (~3‒4 km) to deep (~4.5 km) calcite compensation depth (CCD) occurred at the Eocene-Oligocene Transition (EOT; ~34 Ma), suggesting a strong relationship between calcium carbonate (CaCO3) cycling and Antarctic glaciation. To further investigate the linkages between these two events, detailed records of deep-sea carbonate content, and bulk sediment and benthic foraminiferal stable isotope records are needed. This dataset contains bulk sediment stable isotope and carbonate content records from eight sites in the eastern equatorial Pacific (ODP Leg 199 and IODP Expedition 320). These records were used to reconstruct the depth of the calcite compensation depth (CCD) across the Eocene-Oligocene Transition. The projected depth of the CCD is included in this dataset. In addition, this dataset contains a monospecific epifaunal benthic foraminiferal stable isotope stratigraphy from IODP Expedition 320 Site U1334, in the eastern equatorial Pacific, across the Eocene-Oligocene Transition.
    Keywords: CCD; Eocene-Oligocene Transition; IODP Exp. 320; ODP Leg 199
    Type: Dataset
    Format: application/zip, 23 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-22
    Description: We present here paleomagnetic and magnetic anisotropy data from discrete samples collected in the middle Eocene to early Miocene sediment recovered in International Ocean Discovery Program (IODP) Sites U1507 and U1511 (Expedition 371, Tasman Sea, 27 July to 26 September 2017). Data consists of three tables (Table S2, S3, S4). Table S2 contains the paleomagnetic directions from discrete specimens collected in both Hole U1507B and Hole U1511B. The samples were measured for their paleomagnetic signal at the University of Bremen (Germany) between 2019 and 2021. Paleomagnetic inclinations are listed before and after correction for inclination shallowing. Table S3 contains the anisotropy of magnetic susceptibility (AMS) of representative specimens from Hole U1507B. Table S4 contains the anisotropy of anhysteretic remanent magnetization (AARM) of representative specimens from Hole U1507B. Both the AMS and AARM data of tables S3 and S4 were acquired at the University of Turin (Italy) between 2020 and 2021. These data were used for determining the absolute paleolatitude of northern Zealandia between the middle Eocene and the early Miocene (Dallanave et al., 2022; doi:10.1029/2022JB024736).
    Keywords: IODP Exp. 371; Site U1507; Site U151; Tasman Sea
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...