GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Environmental management ; Environmental Management ; Hydrology.
    Description / Table of Contents: Comparison between physical and virtual water transfer -- Pattern of physical and virtual water flows: the impact to water quantity stress among China’s provinces -- Physical water transfer and its impact on water quality: case of Yangtze River Diversions -- Water transfer to achieve environmental issues: waterfront body -- Case of physical water transfer from Yangtze River: different routes -- Virtual water transfer within China: case of Shanghai
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 76 p. 32 illus., 23 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9789811391637
    Series Statement: SpringerBriefs in Water Science and Technology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Description: Understanding what controls global leaf type variation in trees is crucial for \ncomprehending their role in terrestrial ecosystems, including carbon, water \nand nutrient dynamics. Yet our understanding of the factors infuencing \nforest leaf types remains incomplete, leaving us uncertain about the global \nproportions of needle-leaved, broadleaved, evergreen and deciduous \ntrees. To address these gaps, we conducted a global, ground-sourced \nassessment of forest leaf-type variation by integrating forest inventory \ndata with comprehensive leaf form (broadleaf vs needle-leaf) and habit \n(evergreen vs deciduous) records. We found that global variation in leaf \nhabit is primarily driven by isothermality and soil characteristics, while leaf \nform is predominantly driven by temperature. Given these relationships, \nwe estimate that 38% of global tree individuals are needle-leaved evergreen, \n29% are broadleaved evergreen, 27% are broadleaved deciduous and \n5% are needle-leaved deciduous. The aboveground biomass distribution \namong these tree types is approximately 21% (126.4\xe2\x80\x89Gt), 54% (335.7\xe2\x80\x89Gt), 22% \n(136.2\xe2\x80\x89Gt) and 3% (18.7\xe2\x80\x89Gt), respectively. We further project that, depending \non future emissions pathways, 17\xe2\x80\x9334% of forested areas will experience \nclimate conditions by the end of the century that currently support a \ndiferent forest type, highlighting the intensifcation of climatic stress on \nexisting forests. By quantifying the distribution of tree leaf types and their \ncorresponding biomass, and identifying regions where climate change will \nexert greatest pressure on current leaf types, our results can help improve \npredictions of future terrestrial ecosystem functioning and carbon cycling.
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-19
    Description: Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land \nuse and climate have considerably reduced the scale of this system1 \n. Remote-sensing \nestimates to quantify carbon losses from global forests2\xe2\x80\x935 \n are characterized by \nconsiderable uncertainty and we lack a comprehensive ground-sourced evaluation to \nbenchmark these estimates. Here we combine several ground-sourced6 \n and satellitederived approaches2,7,8 \n to evaluate the scale of the global forest carbon potential \noutside agricultural and urban lands. Despite regional variation, the predictions \ndemonstrated remarkable consistency at a global scale, with only a 12% diference \nbetween the ground-sourced and satellite-derived estimates. At present, global forest \ncarbon storage is markedly under the natural potential, with a total defcit of 226\xe2\x80\x89Gt \n(model range\xe2\x80\x89=\xe2\x80\x89151\xe2\x80\x93363\xe2\x80\x89Gt) in areas with low human footprint. Most (61%, 139\xe2\x80\x89Gt\xe2\x80\x89C) \nof this potential is in areas with existing forests, in which ecosystem protection can \nallow forests to recover to maturity. The remaining 39% (87\xe2\x80\x89Gt\xe2\x80\x89C) of potential lies in \nregions in which forests have been removed or fragmented. Although forests cannot \nbe a substitute for emissions reductions, our results support the idea2,3,9 \n that the \nconservation, restoration and sustainable management of diverse forests ofer \nvaluable contributions to meeting global climate and biodiversity targets.
    Keywords: Multidisciplinary
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Marine diazotrophs convert dinitrogen (N-2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N-2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N-2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N-2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43-57 versus 45-63 TgNyr (-1); ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223 +/- 30 TgNyr (-1) (mean +/- standard error; same hereafter) compared to version 1 (74 +/- 7 TgNyr (-1)). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88 +/- 23 versus 20 +/- 2 TgNyr 1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40 +/- 9 versus 10 +/- 2 TgNyr (-1)). Moreover, version 2 estimates the N-2 fixation rate in the Indian Ocean to be 35 +/- 14 TgNyr (-1), which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N-2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional N-15(2) bubble method yields lower rates in 69% cases compared to the new N-15(2) dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...