GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (10)
Document type
Publisher
Language
Years
Year
  • 1
    Publication Date: 2023-01-25
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a spaceborne German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP core themes are environmental changes, ecosystem responses to human activities, and management of natural resources. In 2021 major milestones were achieved in the sensor and satellite preparation which is by end-2021 in the final acceptance review and pre-launch phase, with a launch window opening April 2022 (Fischer et al., ESA LPS 2022). Accordingly, the mission science support shifted from science development to pre-launch and launch support. The EnMAP science preparation program has been run for more than a decade to support industrial and mission development, and scientific exploitation of the data by the user community. The program is led by the German Research Center for Geosciences (GFZ) Potsdam supported by several partners and is funded within the German Earth observation program by the DLR Space Agency with resources from the German Federal Ministry for Economic Affairs and Energy (BMWi). In 2020 a new 3+1-year project phase started during which specific activities are performed at the GFZ Potsdam together with the four project partners Humboldt-University (HU) Berlin, Alfred-Wegener Institute (AWI) Bremerhaven, Ludwig Maximilian University (LMU) Munich, and University Greifswald. These activities focus on the preparation for the scientific exploitation of the data by the user community as well as mission support during the commissioning phase and the start of the nominal phase, supported by the EnMAP Science Advisory Group. In this presentation, we aim at providing an update of the current science preparation activities performed at GFZ. This includes an update of the data product validation activities focusing on an independent validation of the EnMAP radiance and reflectance products. For smooth and efficient validation especially during the commissioning phase, a semi-automatic processing chain is being developed (EnVAL), which streamlines the validation sites and in-situ data management as well as the validation tasks and report generation. Also, an update on new resources in the online learning initiative HYPERedu will be presented. In particular, the first Massive Open Online Course (MOOC) on the basics of imaging spectroscopy titled ‘Beyond the Visible – Introduction to Hyperspectral Remote Sensing’ was successfully opened in November 2021. An update will be further provided on the status of algorithms included in the EnMAP-Box related to data pre-processing and derivation of geological and soil mapping. It includes the EnMAP processing tool (EnPT) that is developed as an alternative to the processing chain of the EnMAP ground segment and provides free and open-source features to process EnMAP Level-1B data to Level-2A bottom-of-atmosphere (BOA) reflectance, and the EnMAP geological Mapper (EnGeoMap) and Soil Mapper (EnSoMap) for users in bare Earth and Geosciences applications. Finally, a background mission plan is developed as mission internal to fully exploit the resources of the satellite in terms of functionalities and/or capacities when there are resources available after all user requests have been processed. It can be used to generate time series databases interesting for the user community and anticipate future user needs, or to prototype and validate new mission strategies, such as large mosaicking demonstrations and/or synergies with other hyperspectral missions.
    Type: info:eu-repo/semantics/lecture
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-08
    Description: Soil spectral libraries (SSLs) are important big-data archives (spectra associated with soil properties) that are analyzed via machine-learning algorithms to estimate soil attributes. Since different spectral measurement protocols are applied when constructing SSLs, it is necessary to examine harmonization techniques to merge the data. In recent years, several techniques for harmonization have been proposed, among which the internal soil standard (ISS) protocol is the most largely applied and has demonstrated its capacity to rectify systematic effects during spectral measurements. Here, we postulate that a spectral transfer function (TF) can be extracted between existing (old) SSLs if a subset of samples from two (or more) different SSLs are remeasured using the ISS protocol. A machine-learning TF strategy was developed, assembling random forest (RF) spectral-based models to predict the ISS spectral condition using soil samples from two existing SSLs. These SSLs had already been measured using different protocols without any ISS treatment the Brazilian (BSSL, generated in 2019) and the European (LUCAS, generated in 2009–2012) SSLs. To verify the TF’s ability to improve the spectral assessment of soil attributes after harmonizing the different SSLs’ protocols, RF spectral-based models for estimating organic carbon (OC) in soil were developed. The results showed high spectral similarities between the ISS and the ISS–TF spectral observations, indicating that post-ISS rectification is possible. Furthermore, after merging the SSLs with the TFs, the spectral-based assessment of OC was considerably improved, from R2 = 0.61, RMSE (g/kg) = 12.46 to R2 = 0.69, RMSE (g/kg) = 11.13. Given our results, this paper enhances the importance of soil spectroscopy by contributing to analyses in remote sensing, soil surveys, and digital soil mapping.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-08
    Description: Remote sensing and soil spectroscopy applications are valuable techniques for soil property estimation. Soil organic matter (SOM) and calcium carbonate are important factors in soil quality, and although organic matter is well studied, calcium carbonates require more investigation. In this study, we validated the performance of laboratory soil spectroscopy for estimating the aforementioned properties with referenced in situ data. We also examined the performance of imaging spectroscopy sensors, such as the airborne HySpex and the spaceborne PRISMA. For this purpose, we applied four commonly used machine learning algorithms and six preprocessing methods for the evaluation of the best fitting algorithm.. The study took place over crop areas of Amyntaio in Northern Greece, where extensive soil sampling was conducted. This is an area with a very variable mineralogical environment (from lignite mine to mountainous area). The SOM results were very good at the laboratory scale and for both remote sensing sensors with R2 = 0.79 for HySpex and R2 = 0.76 for PRISMA. Regarding the calcium carbonate estimations, the remote sensing accuracy was R2 = 0.82 for HySpex and R2 = 0.36 for PRISMA. PRISMA was still in the commissioning phase at the time of the study, and therefore, the acquired image did not cover the whole study area. Accuracies for calcium carbonates may be lower due to the smaller sample size used for the modeling procedure. The results show the potential for using quantitative predictions of SOM and the carbonate content based on soil and imaging spectroscopy at the air and spaceborne scales and for future applications using larger datasets.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-23
    Description: In support of the Environmental Mapping & Analysis Program (EnMAP) mission [1], the acquisition of accurate and comparable spectroradiometric in-situ measurements is crucial for vicarious validation of the official EnMAP data products [2]. This document provides a guide on properly conducting spectroradiometric field measurements within the scope of EnMAP. It is a summary, of the detailed technical handbook developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) [3], the approach established by the Remote Sensing Laboratories (RSL, University of Zurich) [4], on the bases of „Progress in field spectroscopy“ [5], “Field and airborne spectroscopy cross validation - Some considerations” [6] and the experience gained throughout numerous validation efforts for air- and spaceborne sensors by the Remote Sensing and Geoinformatics section at the GFZ Potsdam that have been specially adapted for EnMAP purposes. The following procedure should be used when conducting in-situ measurements of terrestrial surfaces to obtain consistent measurements by applying a repeatable approach throughout the validation phase of the EnMAP mission.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-06
    Description: The efficiency of spectral-based assessments of soil attributes using soil spectral libraries (SSLs) covering the visible–near-infrared–shortwave-infrared (VNIR–SWIR: 400–2500 nm) region has been proven in many studies. Nevertheless, as traditional SSLs are commonly developed under laboratory conditions, their application is limited for the assessment of soil surface-dependent properties such as water-infiltration rate (WIR) into the soil profile due to the sampling procedure. Currently, few studies are based on field SSLs for the prediction of physical soil properties. This study used a field-based protocol to measure soil reflectance data and WIR simultaneously in the field, and generate spectral-based decision tree models to predict WIR solely from field spectral measurements using the SoilPRO® assembly. The obtained models were applied to both airborne hyperspectral (HySpex) and satellite multispectral (Sentinel 2) data on a pixel-by-pixel basis to generate raster maps of WIR. The study areas were located in Macedonia (Greece), and were optimal for mapping WIR because the soil crust was well developed, and sites were characterized by bare soils (no vegetation coverage) with a sandy structure. Whereas the WIR map generated with the satellite data was poor due to the low spatial and spectral resolution of Sentinel 2 (20 m, 9 bands), the results obtained with the airborne hyperspectral HySpex sensor (5 m, 408 bands) were satisfactorily validated in the ground-truth stage with good prediction accuracy due to high spatial and spectral resolution. Validation accuracy of the HySpex observations using all field samples gave R2 = 0.68, whereas the predictions of the ground-truth samples that were not part of the calibration stage (field validation group) of the model gave R2 = 0.59. We concluded that these results are favourable for rapid estimation of soil surface conditions and pave the way for a wider spatial view from orbital hyperspectral remote-sensing sensors.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-17
    Description: Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single cities or regions). Yet these AI models tend to meet the performance bottleneck in the case studies across cities or regions, due to the lack of diverse RS information and cutting-edge solutions with high generalization ability. To this end, we build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task (called C2Seg dataset), which consists of two cross-city scenes, i.e., Berlin-Augsburg (in Germany) and Beijing-Wuhan (in China). Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN for short, to promote the AI model's generalization ability from the multi-city environments. HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion but also closing the gap derived from enormous differences of RS image representations between different cities by means of adversarial learning. In addition, the Dice loss is considered in HighDAN to alleviate the class imbalance issue caused by factors across cities. Extensive experiments conducted on the C2Seg dataset show the superiority of our HighDAN in terms of segmentation performance and generalization ability, compared to state-of-the-art competitors. The C2Seg dataset and the semantic segmentation toolbox (involving the proposed HighDAN) will be available publicly at https://github.com/danfenghong/RSE_Cross-city.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2024-05-13
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a new spaceborne German hyperspectral satellite mission, whose primary goal is to generate accurate information on the state and evolution of the Earth´s ecosystems. The core themes of EnMAP are monitoring environmental changes, ecosystem responses to human activities, and management of natural resources such as soils and minerals. EnMAP started on 1st April 2022 and is now in operational phase since over six months, with strong expectations regarding data quality and impact on soil research. In this paper, we aim to demonstrate in a few case studies the observed current capabilities for EnMAP with regard to soil mapping based on different test sites and methodologies. Key soil properties could be derived and spatially mapped in agricultural test sites in semi-arid and temperate zones such as Soil Organic Carbon (SOC) content important for soil health and carbon sequestration, texture (clay content) important for soil fertility, and carbonate content. Additionally, we test different standard and state-of-the art methodologies, including new scenarios for time-series of hyperspectral remote sensing data for improved soil products.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-10
    Description: This study introduces the development of Spatially Upscaled Soil Spectral Libraries (SUSSL) approach to assess spectral disturbances caused by variations in surface conditions in remote sensing-based soil property prediction. The SUSSL incorporates realistic cropland reflectance scenarios using spectral modelling and aggregation techniques. By convoluting the spectral database to multispectral and hyperspectral satellite sensors, the sensitivity of spectral indices in retrieving undisturbed surface reflectance is evaluated. Preliminary findings indicate that the spectral disturbance effects significantly impact the accuracy of soil organic carbon (SOC) estimations, resulting in a noticeable loss compared to bare soil spectra. However, strict filtering criteria using spectral indices exhibit promise in enhancing SOC modelling performance, particularly for multispectral sensors. Hyperspectral sensors demonstrate higher baseline accuracies even in disturbed soil cases. This research highlights the importance of accounting for surface condition variations for reliable soil property mapping. Future work involves leveraging machine learning techniques on SUSSL data to improve prediction accuracy and spatial coverage of soil properties using Earth Observation data.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-10
    Description: The Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is a new ESA Earth Observation mission which consists in developing a hyperspectral satellite to support EU policies on the management of natural resources, ultimately helping to address the global issue of food security. One of the mission activities is associated to the development of the CHIME-E2E (End-to-End) Performance Simulator that shall be used to evaluate the sensor design and future processing modules provided by the partners by simulating future CHIME images and thematic products. In the frame of this activity, the CHIME Mission Advisory Group (MAG) has identified a collection of five core high priority products (HPP) that includes the retrieval of canopy nitrogen, leaf nitrogen content, leaf mass/area, soil organic carbon content (SOC) and kaolinite abundance. In this paper, we present the first results of applying the L2B prototype processing to hyperspectral airborne and spatial imagery used to simulate realistic CHIME data, to derive soil and mineral maps. The obtained results demonstrate the potential of the next generation of Copernicus missions with high spectral resolution and wide swath imaging satellite for geoscience research and applications.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...